Jagdish K Vij

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1397867/publications.pdf

Version: 2024-02-01

329 papers 6,877 citations

38 h-index 110387 64 g-index

344 all docs

344 docs citations

times ranked

344

2464 citing authors

#	Article	IF	CITATIONS
1	Electrooptic, pyroelectric and dielectric spectroscopic studies of nematic and twist bend nematic phases of achiral hockey-shaped bent-core liquid crystal. Journal of Molecular Liquids, 2022, 351, 118632.	4.9	7
2	The Beauty of Twist-Bend Nematic Phase: Fast Switching Domains, First Order Fréedericksz Transition and a Hierarchy of Structures. Crystals, 2021, 11, 621.	2.2	6
3	Variety of subphase emerging sequences, the frustration of three main phases, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sm</mml:mi><mml:msubsup><m< td=""><td>ıml:mi>C< 2.1</td><td>/mml:mi><mn< td=""></mn<></td></m<></mml:msubsup></mml:mrow></mml:math 	ıml:mi>C< 2.1	/mml:mi> <mn< td=""></mn<>
J	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Sm</mml:mi><mml:msup><mml:, 1998="" <mml:math.xmlns:mml="http://www.w3.org/1998/Ma. Physical Review E, 2021, 104, 014705.</td><td>mi>C</mn</td><td>nl:mi><mml:m</td></tr><tr><td>4</td><td>Switching in a Biaxial Smectic A - like Phase. Liquid Crystals Today, 2021, 30, 20-25.</td><td>2.3</td><td>1</td></tr><tr><td>5</td><td>Stereochemical Rules Govern the Soft Selfâ€Assembly of Achiral Compounds: Understanding the Heliconical Liquidâ€Crystalline Phases of Bentâ€Core Mesogens. Chemistry - A European Journal, 2020, 26, 4714-4733.</td><td>3.3</td><td>23</td></tr><tr><td>6</td><td>Dielectric study of a subphase stabilized in an exceptionally wide temperature range by a delicate balance of interlayer interactions and thermal fluctuations. Physical Review E, 2020, 102, 012703.</td><td>2.1</td><td>2</td></tr><tr><td>7</td><td>Controlling the formation of heliconical smectic phases by molecular design of achiral bent-core molecules. Journal of Materials Chemistry C, 2020, 8, 3316-3336.</td><td>5.5</td><td>9</td></tr><tr><td>8</td><td>Design and electro-optic investigations of de Vries chiral smectic liquid crystals for exhibiting broad temperature ranges of SmA* and SmC* phases and fast electro-optic switching. Journal of Materials Chemistry C, 2020, 8, 4859-4868.</td><td>5.5</td><td>5</td></tr><tr><td>9</td><td>Thermochromic luminescence in dual-dye-doped liquid crystal mixture induced by varying the energy transfer rate. Dyes and Pigments, 2020, 180, 108450.</td><td>3.7</td><td>5</td></tr><tr><td>10</td><td>Observation of an anomalous SmA-SmC-SmA phase sequence in a bent-core liquid crystal derived from 4-cyanoresorcinol. Physical Review Research, 2020, 2, .</td><td>3.6</td><td>6</td></tr><tr><td>11</td><td>Unexpected electric-field-induced antiferroelectric liquid crystal phase in the <mml:math xmlns:mml=" and="" http:="" math="" mathml"="" www.w3.org=""><mml:mrow><mml:mi>Sm</mml:mi><mml:msubsup><m 010701.<="" 100,="" 2019,="" and="" discrete="" e,="" effect.="" flexoelectric="" physical="" range="" review="" td="" temperature="" the=""><td>ıml211i>C<</td><td>/m#nl:mi><mn< td=""></mn<></td></m></mml:msubsup></mml:mrow></mml:,></mml:msup></mml:mrow>	ıml 2 11i>C<	/m#nl:mi> <mn< td=""></mn<>
12	Molecular orientational distribution function of a chiral de Vries smectic liquid crystal from birefringence measurements. Journal of Chemical Physics, 2019, 150, 084901.	3.0	5
13	Elucidation of the de Vries behavior in terms of the orientational order parameter, apparent tilt angle, and field-induced tilt angle for smectic liquid crystals by polarized infrared spectroscopy. Physical Review E, 2019, 100, 052704.	2.1	3
14	A modified Langevin-Debye model for investigating the electro-optic behaviour of de Vries smectic liquid crystals. Liquid Crystals, 2019, 46, 1246-1251.	2.2	3
15	Investigation of the heliconical smectic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>SmC</mml:mi><mm:mi><mml:mi>F</mml:mi></mm:mi></mml:msub></mml:mrow><mml:mrow><mml:mi>h phase in achiral bent-core mesogens derived from 4-cyanoresorcinol. Physical Review Materials, 2019,</mml:mi></mml:mrow></mml:math>	l:mi>Snn d:# ni> <r< td=""><td>ıml:mi>mmlomi>e</td></r<>	ıml:mi>mm lo mi>e
16	The effect of chiral doping in achiral smectic liquid crystals on the de Vries characteristics: smectic layer thickness, electro-optics and birefringence. Liquid Crystals, 2018, 45, 513-521.	2.2	11
17	Distortions in structures of the twist bend nematic phase of a bent-core liquid crystal by the electric field. Physical Review E, 2018, 98, 022704.	2.1	31
18	Formation and development of nanometer-sized cybotactic clusters in bent-core nematic liquid crystalline compounds. Beilstein Journal of Nanotechnology, 2018, 9, 1288-1296.	2.8	13

#	Article	IF	Citations
19	Resonant x-ray scattering observation of transitional subphases during the electric-field-induced phase transition in a mixture of Se-containing chiral smectic liquid crystals. Physical Review E, 2018, 97, 062702.	2.1	3
20	de Vries liquid crystals based on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone. Physical Review Materials, 2018, 2, .	2.4	14
21	Phase behavior and characterization of heptamethyltrisiloxane-based de Vries smectic liquid crystal by electro-optics, x rays, and dielectric spectroscopy. Physical Review E, 2017, 95, 032701.	2.1	16
22	Tunable Transfer of Molecules between Liquid Crystal Microdroplets and Control of Photonic Crystallinity in Isolated Microdroplets. Advanced Optical Materials, 2017, 5, 1700119.	7.3	8
23	Molecular Transfer: Tunable Transfer of Molecules between Liquid Crystal Microdroplets and Control of Photonic Crystallinity in Isolated Microdroplets (Advanced Optical Materials 12/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
24	Design and investigation of de Vries liquid crystals based on 5-phenyl-pyrimidine and (<i>R,R</i>) Tj ETQq0 0 0 r	gBŢ./Over	\log_{13} 10 Tf 50
25	Observation of the de Vries behavior in SmA* phase of a liquid crystal using polarised Raman scattering and infrared spectroscopy. Journal of Chemical Physics, 2017, 147, 094903.	3.0	9
26	Short bent-core molecules: X-ray, polarization, dielectricity, texture and electro-optics investigations. Physical Chemistry Chemical Physics, 2017, 19, 22946-22956.	2.8	9
27	Characterization of the Submicrometer Hierarchy Levels in the Twist-Bend Nematic Phase with Nanometric Helices via Photopolymerization. Explanation for the Sign Reversal in the Polar Response. Nano Letters, 2017, 17, 7515-7519.	9.1	25
28	A fast linear electro-optical effect in a non-chiral bent-core liquid crystal. Journal of Materials Chemistry C, 2017, 5, 12585-12590.	5. 5	13
29	Chiral smectic- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi></mml:math> and smectic- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>C</mml:mi></mml:math> phases with de Vries characteristics. Physical Review E, 2017, 95, 062704.	2.1	16
30	Definite existence of subphases with eight- and ten-layer unit cells as studied by complementary methods, electric-field-induced birefringence and microbeam resonant x-ray scattering. Physical Review E, 2017, 96, 012701.	2.1	11
31	Development of ferroelectricity in the smectic phases of 4-cyanoresorcinol derived achiral bent-core liquid crystals with long terminal alkyl chains. Physical Review Materials, 2017, 1, .	2.4	14
32	Anomalous temperature dependence of layer spacing of de Vries liquid crystals: Compensation model. Applied Physics Letters, 2016, 108, 243301.	3.3	14
33	Fast linear electrooptic effect in non-chiral bent-core liquid crystal. Ferroelectrics, 2016, 495, 35-42.	0.6	2
34	Effective long-range interlayer interactions and electric-field-induced subphases in ferrielectric liquid crystals. Physical Review E, 2016, 93, 042707.	2.1	8
35	Transitional subphases near the electric-field-induced phase transition to the ferroelectric phase in Se-containing chiral smectic liquid crystals observed by resonant x-ray scattering. Physical Review E, 2016, 94, 052703.	2.1	7
36	Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect. Nature Communications, 2016, 7, 11369.	12.8	64

#	Article	IF	CITATIONS
37	Flexoelectric polarization in cyanoresorcinol and oxadiazole bent core nematic liquid crystals. Ferroelectrics, 2016, 495, 28-34.	0.6	1
38	Flexoelectric polarization studies in bent-core nematic liquid crystals. Physical Review E, 2015, 92, 022502.	2.1	20
39	Flexoelectric Behavior of a Bimesogenic Liquid Crystal. Molecular Crystals and Liquid Crystals, 2015, 611, 65-70.	0.9	10
40	Hierarchy of Periodic Patterns in the Twist-bend Nematic Phase of Mesogenic Dimers. Molecular Crystals and Liquid Crystals, 2015, 611, 180-185.	0.9	19
41	Dielectric Study of Liquid Crystals with Large Electroclinic Effect. Molecular Crystals and Liquid Crystals, 2015, 610, 193-200.	0.9	1
42	Hierarchical elasticity of bimesogenic liquid crystals with twist-bend nematic phase. Applied Physics Letters, 2015, 106, .	3.3	78
43	Dielectric Study of Nematic LC Built with Bent-core Molecules. Molecular Crystals and Liquid Crystals, 2015, 610, 63-67.	0.9	6
44	Occurrence of Five Different Orthogonal Smectic Phases in a Bent-Core (BC) Liquid Crystal. Molecular Crystals and Liquid Crystals, 2015, 610, 116-121.	0.9	3
45	Effect of molecular-scale surface morphology on the surface melting of liquid crystals on self-assembled monolayers. Applied Physics Letters, 2014, 105, .	3.3	10
46	1,2,4â€Oxadiazoleâ€Based Bentâ€Core Liquid Crystals with Cybotactic Nematic Phases. ChemPhysChem, 2014, 15, 1323-1335.	2.1	66
47	Development of polar order and tilt in lamellar liquid crystalline phases of a bent-core mesogen. Soft Matter, 2014, 10, 5003-5016.	2.7	20
48	Flexoelectric behavior of bimesogenic liquid crystals in the nematic phase $\hat{a} \in \hat{b}$ observation of a new self-assembly pattern at the twist-bend nematic and the nematic interface. Journal of Materials Chemistry C, 2014, 2, 8179-8184.	5 . 5	48
49	Dielectric and electro-optic studies of a bimesogenic liquid crystal composed of bent-core and calamitic units. Physical Review E, 2014, 90, 032506.	2.1	11
50	Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals. Physical Review E, 2013, 88, 012504.	2.1	14
51	Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nature Communications, 2013, 4, 2635.	12.8	534
52	Properties of the self-deforming Ntb phase in mesogenic dimers. Proceedings of SPIE, 2013, , .	0.8	13
53	Effect of cybotactic clusters on the elastic and flexoelectric properties of bent-core liquid crystals belonging to the same homologous series. Physical Review E, 2013, 88, 032503.	2.1	31
54	Gold nanorods embedded discotic nanoribbons. Chemical Communications, 2013, 49, 978-980.	4.1	20

#	Article	IF	CITATIONS
55	Degeneracy lifting due to thermal fluctuations around the frustration point between anticlinic antiferroelectric SmCA*and synclinic ferroelectric SmC*. Physical Review E, 2013, 87, 012502.	2.1	12
56	Elastic properties of bimesogenic liquid crystals. Liquid Crystals, 2013, 40, 681-688.	2.2	64
57	Superlattice structures observed in the extraordinary phase sequence and analyzed by the phenomenological Landau model and the partially molecular model. Physical Review E, 2013, 87, 062506.	2.1	12
58	A Liquid Crystalline Phase with Uniform Tilt, Local Polar Order and Capability of Symmetry Breaking. Advanced Materials, 2013, 25, 2186-2191.	21.0	79
59	Biaxial order and a rotation of the minor director in the nematic phase of an organo-siloxane tetrapode by the electric field. Journal of Chemical Physics, 2012, 136, 094513.	3.0	11
60	Physical Properties of SmAbPhase in an Achiral Bent–Core Smectic Liquid Crystal. Ferroelectrics, 2012, 431, 196-201.	0.6	4
61	Properties of Non-Tilted Bent–Core Orthogonal Smectic Liquid Crystal. Molecular Crystals and Liquid Crystals, 2012, 553, 140-146.	0.9	5
62	Structure and Polymorphism of Biaxial Bent–Core Smectic Liquid Crystal. Molecular Crystals and Liquid Crystals, 2012, 553, 133-139.	0.9	3
63	Biaxial Order Parameter in an Achiral Bent–Core Smectic Liquid Crystal. Ferroelectrics, 2012, 431, 190-195.	0.6	1
64	Chirality of an achiral bent-core nematic mesogen observed in planar and homeotropic cells under certain boundary conditions. Soft Matter, 2012, 8, 10479.	2.7	12
65	Field-induced periodic chiral pattern in the Nx phase of achiral bimesogens. Applied Physics Letters, 2012, 101, .	3.3	81
66	Nematic Phases in 1 ,2,4â€Oxadiazoleâ€Based Bentâ€Core Liquid Crystals: Is There a F erroelectric Switching?. Advanced Functional Materials, 2012, 22, 1671-1683.	14.9	108
67	Development of polar order in a bent-core liquid crystal with a new sequence of two orthogonal smectic and an adjacent nematic phase. Journal of Materials Chemistry, 2011, 21, 18711.	6.7	32
68	Evidence of a polar cybotactic smectic A phase in a new fluorine substituted bent-core compound. Journal of Materials Chemistry, 2011, 21, 17098.	6.7	22
69	Electric Field Induced Transformations and Dielectric Properties in Non-Tilted Phases of a Bent-Core Smectic Liquid Crystal. Molecular Crystals and Liquid Crystals, 2011, 540, 82-87.	0.9	3
70	A study of a ferroelectric organosiloxane liquid crystal with a high spontaneous polarisation. Liquid Crystals, 2011, 38, 521-529.	2.2	0
71	Microsecond linear optical response in the unusual nematic phase of achiral bimesogens. Applied Physics Letters, 2011, 99, .	3.3	142
72	Discovery of a novel ferrielectric phase of five-layer periodicity in binary mixtures of chiral smectic liquid crystals exhibiting unusual reversed phase sequence. Liquid Crystals, 2011, 38, 663-668.	2.2	28

#	Article	IF	CITATIONS
73	Physical ageing and the Johari–Goldstein relaxation in molecular glasses. Journal of Non-Crystalline Solids, 2011, 357, 783-792.	3.1	26
74	Short-range correlations seen in the nematic phase of bent-core liquid crystals by dielectric and electro-optic studies. Physical Review E, 2011, 84, 060701.	2.1	23
75	Dielectric and Optical Study of Biaxial Bent–Core Nematic Liquid Crystal. Molecular Crystals and Liquid Crystals, 2011, 540, 75-81.	0.9	6
76	Sequence of Four Orthogonal Smectic Phases in an Achiral Bent-Core Liquid Crystal: Evidence for the SmAPαPhase. Physical Review Letters, 2011, 107, 247801.	7.8	37
77	Debye process and dielectric state of an alcohol in a nonpolar solvent. Journal of Chemical Physics, 2011, 134, 044525.	3.0	17
78	Geoffrey Luckhurst elected to the Royal Irish Academy. Liquid Crystals Today, 2011, 20, 85-86.	2.3	0
79	Effect of high hydrostatic pressure on the dielectric relaxation in a non-crystallizable monohydroxy alcohol in its supercooled liquid and glassy states. Journal of Chemical Physics, 2011, 135, 084507.	3.0	17
80	Field-induced transformations in the biaxial order of non-tilted phases in a bent-core smectic liquid crystal. Europhysics Letters, 2010, 92, 26002.	2.0	34
81	Development of polar order in liquid crystalline phases of a banana compound with a unique sequence of three orthogonal phases. Chemical Communications, 2010, 46, 3702.	4.1	59
82	Electric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal. Applied Physics Letters, $2010, 96, .$	3.3	55
83	X-ray diffraction study of ferroelectric and antiferroelectric liquid crystal mixtures exhibiting de VriesSmAâ^—-SmCâ^—transitions. Physical Review E, 2010, 81, 050701.	2.1	7
84	Study of the biaxiality in the nematic phase of liquid crystals in terms of orientational order parameters by infrared spectroscopy. Liquid Crystals, 2010, 37, 653-667.	2.2	27
85	Antiferroelectric and ferroelectric orderings in frustrated chiral tilted smectics and a continuous change from anticlinic SmC A * to synclinic SmC *. Europhysics Letters, 2010, 90, 56005.	2.0	12
86	Spontaneous Periodic Deformations in Nonchiral Planar-Aligned Bimesogens with a Nematic-Nematic Transition and a Negative Elastic Constant. Physical Review Letters, 2010, 105, 167801.	7.8	307
87	Liquid crystal display modes in a nontilted bent-core biaxial smectic liquid crystal. Applied Physics Letters, 2010, 97, .	3.3	44
88	Macroscopic biaxiality and electric-field–induced rotation of the minor director in the nematic phase of a bent-core liquid crystal. Europhysics Letters, 2010, 91, 66002.	2.0	21
89	Sign reversal in the dielectric anisotropy as functions of temperature and frequency in the nematic phase of a bent-core mesogen. Applied Physics Letters, 2010, 97, .	3.3	17
90	Orientational order of a ferroelectric liquid crystal with small layer contraction. Physical Review E, 2010, 82, 031702.	2.1	11

#	Article	IF	CITATIONS
91	Molecular model of biaxial ordering in nematic liquid crystals composed of flat molecules with four mesogenic groups. Physical Review E, 2010, 81, 061702.	2.1	32
92	Realization of Field Sequential Color in Simple Matrix Antiferroelectric Liquid Crystal Displays by Utilizing Fast Pretransitional Response. Applied Physics Express, 2009, 2, 071403.	2.4	3
93	Propagation of an electromagnetic wave in an absorbing anisotropic medium and infrared transmission of liquid crystals: Comparison with experiments. Physical Review E, 2009, 80, 021704.	2.1	1
94	Optical confirmation of biaxial nematic (Nb) phase in a bent-core mesogen. Applied Physics Letters, 2009, 95, 183304.	3.3	49
95	Anomalous dependence of response time on the electric field in an electroclinic liquid crystal with large induced tilt and polarization. Applied Physics Letters, 2009, 94, .	3.3	5
96	Degeneracy lifting near the frustration points due to long-range interlayer interaction forces and the resulting varieties of polar chiral tilted smectic phases. Liquid Crystals, 2009, 36, 1101-1118.	2.2	29
97	The effect of confinement on the stability of field induced states and on supercooling in antiferro-ferroelectric phase transitions in chiral smectic liquid crystals. Journal of Applied Physics, 2009, 106, 073514.	2.5	8
98	Evolution of Subphases in a Prototype Binary Mixture System as Observed by Electric-Field-Induced Birefringence and Helical Pitch. Molecular Crystals and Liquid Crystals, 2009, 511, 36/[1506]-49/[1519].	0.9	9
99	Effects of Confinement and Electric Field on the Dielectric Behavior of Smectic-Phase. Molecular Crystals and Liquid Crystals, 2009, 512, 21/[1867]-31/[1877].	0.9	1
100	Experimental study of de Vries properties in antiferroelectric smectic liquid crystals. European Physical Journal E, 2008, 27, 397-405.	1.6	17
101	Conoscopy of chiral smectic liquid crystal cells. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1820.	1.5	12
102	Effect of cell surfaces on the stability of chiral smectic- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi></mml:math> phases. Physical Review E, 2008, 78, 021711.	2.1	20
103	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mo>a^—</mml:mo> <mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi>	2,1	32
104	smeetic-cmml math xmlns:mml="http://www.w3.org/1998/Ma. Physical Review E, 2008, 77, 041707 Mechanism of field-induced unwinding of Sm <i>C</i> * helix and bias field dependencies of dielectric permittivity and effective polarization. Europhysics Letters, 2008, 82, 26003.	2.0	10
105	Solitary wave propagation in surface stabilized ferroelectric liquid crystal cells. Applied Physics Letters, 2008, 92, 083510.	3.3	3
106	Experimental study of high-temperature smectic- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mi>C</mml:mi><mml:mrow><mml:mi>F</mml:mi><mml:mi>C</mml:mi><mml:mrow><mml:mi>F</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><m< td=""><td>i>½./imml:r</td><td>mi10mml:mn:</td></m<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:math>	i> ½./i mml:r	mi 1 0mml:mn:
107	051707. Electric-field-dependent dielectric response in the de Vries–type smectic-A*phase possessing local orientational order with nanoscale correlation length. Physical Review E, 2008, 78, 041705.	2.1	10
108	V-shaped electro-optic response observed in a chiral ferroelectric smectic liquid crystal. Applied Physics Letters, 2008, 93, 093507.	3.3	4

#	Article	IF	Citations
109	Antiferroelectric dielectric relaxation processes and the interlayer interaction in antiferroelectric liquid crystals. Applied Physics Letters, 2008, 93, 142903.	3.3	18
110	Behaviour of Smectic Phases in Free Standing Film Geometry: Discontinuous Change in the Tilt Angle of Polar Smectic Phases at the Phase Transition Temperature. Ferroelectrics, 2008, 365, 95-102.	0.6	2
111	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup><mml:mi>C</mml:mi><mml:mo>*</mml:mo></mml:msup> and smectic- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>C</mml:mi><mml:mi>A</mml:mi><mml:mi><mml:mo>*</mml:mo></mml:mi></mml:msubsup></mml:math>	2.1 bsup> <td>21 ml:math>ph</td>	21 ml:math>ph
112	and the thresholdless antiferroelectricity. Physical Review E, 2008, 78, 041702. Dynamic Mechanism of the Ferroelectric to Antiferroelectric Phase Transition in Chiral Smectic Liquid Crystals. Physical Review Letters, 2008, 101, 097801.	7.8	14
113	The Structure and Properties of Antiferroelectric Liquid Crystals. Advances in Chemical Physics, 2007, , 271-316.	0.3	3
114	Orientational Effects in Ferroelectric and Antiferroelectric Liquid Crystals using Infrared Spectroscopy. Advances in Chemical Physics, 2007, , 203-269.	0.3	10
115	Conformational distribution of a ferroelectric liquid crystal revealed using fingerprint vibrational spectroscopy and the density functional theory. Journal of Chemical Physics, 2007, 126, 224904.	3.0	10
116	Dielectric relaxation and crystallization of nanophase separated 1-propanol-isoamylbromide mixture. Journal of Chemical Physics, 2007, 127, 094507.	3.0	13
117	Modulated Hexatic-B* with giant electroclinic effect rather than anticlinic Hexatic-I A * —A novel mechanism for stabilizing antiferroelectricity below Smectic-C A *. Europhysics Letters, 2007, 77, 36004.	2.0	16
118	Experimental study for the conditions of analog switching in ferroelectric liquid crystal cells. Applied Physics Letters, 2007, 91, 052911.	3.3	10
119	Solitary wave propagation in antiferroelectric liquid crystal cells and the quadrupolar term in the interlayer interaction. Physical Review E, 2007, 76, 011708.	2.1	16
120	The Role of Spontaneous Polarization and the Thickness of Alignment Layers on the V-Shaped Switching in FLC Cells. Molecular Crystals and Liquid Crystals, 2007, 477, 223-231.	0.9	1
121	Discontinuous change in the smectic layer thickness in ferrielectric liquid crystals. Physical Review E, 2007, 75, 042701.	2.1	18
122	Molecular orientational properties of a high-tilt chiral smectic liquid crystal determined from its infrared dichroism. Physical Review E, 2007, 76, 051707.	2.1	3
123	Sign reversals in the dielectric anisotropy as functions of temperature and frequency in SmA* phase. Applied Physics Letters, 2007, 91, .	3.3	3
124	Comment on "Optical and Resonant X-Ray Diffraction Studies Confirm aSmCFI2*â^'SmC*Liquid Crystal Phase Sequence Reversal― Physical Review Letters, 2007, 98, 219801.	7.8	5
125	Temperature-induced sign reversal of biaxiality observed by conoscopy in some ferroelectricSmâ^'C*liquid crystals. Physical Review E, 2007, 76, 011709.	2.1	12
126	Interlayer interactions and the dependence of biaxiality of the chiral smectic-C*phase on electric field in the helical unwinding process. Physical Review E, 2007, 75, 051705.	2.1	10

#	Article	IF	Citations
127	Structure and Orientation of Molecules in Discotic Liquid Crystals Using Infrared Spectroscopy. Advances in Chemical Physics, 2007, , 341-486.	0.3	4
128	The effect of ions on the permittivity and dielectric relaxation of an uncrystallizable heptanol. Journal of Physics Condensed Matter, 2007, 19, 506208.	1.8	8
129	The significance of polarizability in the analysis of liquid dielectric behaviour. Journal Physics D: Applied Physics, 2007, 40, 234-241.	2.8	2
130	Electric fieldâ€induced birefringence, optical rotatory power and conoscopic measurements of a chiral antiferroelectric smectic liquid crystal. Liquid Crystals, 2007, 34, 963-973.	2.2	12
131	Structure-Dependent DC Conductivity and Relaxation Time in the Debyeâ^'Stokesâ^'Einstein Equation. Journal of Physical Chemistry B, 2007, 111, 11201-11208.	2.6	17
132	Advances in Microwave and Submillimeter-Wave Dielectric Spectroscopic Techniques and their Applications. Advances in Chemical Physics, 2007, , 775-837.	0.3	9
133	Relaxations and nano-phase-separation in ultraviscous heptanol-alkyl halide mixture. Journal of Chemical Physics, 2007, 126, 034512.	3.0	26
134	Theory of the intermediate tilted smectic phases and their helical rotation. Physical Review E, 2006, 74, 011705.	2.1	39
135	Investigation of de Vries SmA* mesophases in low molecular weight organosiloxane compounds. Journal of Materials Chemistry, 2006, 16, 842-849.	6.7	30
136	Dichroic Properties and the Molecular Tilt Angle of a Large-Tilt Angle Antiferroelectric Liquid Crystal Studied Using Polarized Infrared Spectroscopy. Ferroelectrics, 2006, 343, 167-175.	0.6	3
137	Investigation into the orientation of the liquid-crystal mixture E7 in composite photonic crystals based on single-crystal silicon. Physics of the Solid State, 2006, 48, 384-391.	0.6	1
138	Kinetics of spontaneous change in the localized motions of D-sorbitol glass. Journal of Chemical Physics, 2006, 124, 074509.	3.0	32
139	Orientation polarization from faster motions in the ultraviscous and glassy diethyl phthalate and its entropy. Journal of Chemical Physics, 2006, 124, 044513.	3.0	14
140	Orientational order and dynamics of the dendritic liquid crystal organo-siloxane tetrapodes determined using dielectric spectroscopy. Physical Review E, 2006, 73, 051702.	2.1	30
141	Experimental demonstration, using polarized Raman and infrared spectroscopy, that both conventional and de Vries smectic-Aphases may exist in smectic liquid crystals with a first-orderAâ^'C*transition. Physical Review E, 2006, 74, 051706.	2.1	31
142	Surface-induced multiple reentrant transitions. Physical Review E, 2006, 73, 041704.	2.1	12
143	Investigations of nanoscale helical pitch in smectic-Cα*and smectic-C*phases of a chiral smectic liquid crystal using differential optical reflectivity measurements. Physical Review E, 2006, 74, 011701.	2.1	23
144	Analysis of the vibrational spectra of chiral liquid crystalline thioesters. Liquid Crystals, 2006, 33, 219-225.	2,2	4

#	Article	IF	CITATIONS
145	Study of the SmC $\hat{1}$ [*] Phase in the Tokyo Mixture by Conoscopy Using Tilted Cell. Ferroelectrics, 2006, 344, 41-47.	0.6	6
146	1D photonic crystal fabricated by wet etching of silicon. Optical Materials, 2005, 27, 831-835.	3.6	55
147	Polarized infrared and Raman spectroscopy studies of the liquid crystal E7 alignment in composites based on grooved silicon. Semiconductors, 2005, 39, 759-767.	0.5	9
148	Antiferroelectric Liquid Crystal with ¹³ C Isotope Studied Using FT-IR Spectroscopy and the Density Functional Theory Calculations. Molecular Crystals and Liquid Crystals, 2005, 437, 269/[1513]-278/[1522].	0.9	1
149	Discrete flexoelectric polarizations and biaxial subphases with periodicities other than three and four layers in chiral smectic liquid crystals frustrated between ferroelectricity and antiferroelectricity. Physical Review E, 2005, 72, 041705.	2.1	47
150	Two kinds of smectic- \hat{Cl} *subphases in a liquid crystal and their relative stability dependent on the enantiomeric excess as elucidated by electric-field-induced birefringence experiment. Physical Review E, 2005, 71, 021711.	2.1	44
151	Propagation of an electromagnetic wave in an absorbing anisotropic medium and infrared transmission spectroscopy of liquid crystals. Journal of Chemical Physics, 2005, 122, 174901.	3.0	14
152	Self-assembly of biaxial ordering and molecular tilt angle of chiral smectic liquid crystals in homeotropically aligned cells investigated using infrared spectroscopy. Physical Review E, 2005, 72, 041704.	2.1	11
153	Evidence for de Vries structure in a smectic-Aliquid crystal observed by polarized Raman scattering. Physical Review E, 2005, 71, 041705.	2.1	36
154	Dielectric spectroscopy of the twist grain boundary phase and smecticâ€like behaviour in the Isotropic Phase. Liquid Crystals, 2005, 32, 1045-1051.	2.2	14
155	Design of Siloxane Liquid Crystals Forming a De Vries SmA* Phase. Molecular Crystals and Liquid Crystals, 2005, 439, 245/[2111]-257/[2123].	0.9	8
156	Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential. Physical Review E, 2005, 72, 011103.	2.1	8
157	Profiles of the Director Across a Surface-Stabilized Ferroelectric Liquid Crystal Cell and the Corresponding Pyroelectric Current Spectra. Ferroelectrics, 2004, 311, 21-32.	0.6	0
158	Johari–Goldstein relaxation and crystallization of sorbitol to ordered and disordered phases. Journal of Chemical Physics, 2004, 120, 5455-5462.	3.0	24
159	Thermotropic Biaxial Nematic Phase in Liquid Crystalline Organo-Siloxane Tetrapodes. Physical Review Letters, 2004, 93, 237801.	7.8	194
160	The orientational order parameters of a dendritic liquid crystal organo-siloxane tetrapode oligomer, determined using polarized infrared spectroscopy. Journal of Chemical Physics, 2004, 121, 5012-5021.	3.0	42
161	Study of the de Vries Phase in New Organosiloxanes by Electrooptical and UV/Vis Spectroscopy Measurements. Ferroelectrics, 2004, 310, 111-116.	0.6	7
162	Molecular Structure of a Partly Deuterated Chiral Smectic Liquid Crystal Studied by Polarized FTIR Spectroscopy. Ferroelectrics, 2004, 311, 97-109.	0.6	3

#	Article	IF	CITATIONS
163	Far infrared spectroscopy of water at different temperatures: GHz to THz dielectric spectroscopy of water. Journal of Molecular Liquids, 2004, 112, 125-135.	4.9	75
164	The Critical Behavior of the Order Parameter and Susceptibility Near Smectic A–Smectic C Phase Transition. Ferroelectrics, 2004, 310, 117-123.	0.6	6
165	Structure and Properties of New de Vries SmA* Liquid Crystals. Ferroelectrics, 2004, 309, 111-118.	0.6	10
166	Self-assembled uniaxial and biaxial multilayer structures in chiral smectic liquid crystals frustrated between ferro- and antiferroelectricity. Physical Review E, 2004, 69, 060701.	2.1	24
167	Refractive index at infrared wavelengths and dielectric permittivity of pure and fluorinated silicon dioxide from measurements of their thin films deposited on Si. Journal Physics D: Applied Physics, 2004, 37, 1362-1370.	2.8	11
168	Vertically etched silicon as 1D photonic crystal. Physica Status Solidi A, 2003, 197, 544-548.	1.7	35
169	IR birefringence in artificial crystal fabricated by anisotropic etching of silicon. Semiconductors, 2003, 37, 399-403.	0.5	6
170	Molecular arrangement in a chiral smectic liquid crystal cell studied by polarized infrared spectroscopy. Liquid Crystals, 2003, 30, 149-156.	2.2	8
171	Comparison of the characteristics of the chiral analog of the de Vries type of smectic-A*phase. Physical Review E, 2003, 67, 051709.	2.1	47
172	Measurement of the polarization profile across a surface-stabilized ferroelectric liquid crystal cell using the pyroelectric laser-intensity-modulation method. Journal of Applied Physics, 2003, 93, 159-164.	2.5	4
173	Relaxation strength of localized motions in D-sorbitol and mimicry of glass-softening thermodynamics. Journal of Chemical Physics, 2003, 119, 435-442.	3.0	52
174	Order Parameter, Alignment and Anchoring Transition in Discotic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2003, 397, 231-244.	0.9	30
175	Molecular orientation and the infrared dichroism of a chiral smectic liquid crystal in a homogeneously aligned cell at different temperature and bias fields. Physical Review E, 2003, 68, 031707.	2.1	12
176	Optical rotatory power, biaxiality, and models of chiral tilted smectic phases. Physical Review E, 2003, 68, 021702.	2.1	14
177	FTIR and Raman investigation of vertically etched silicon as a 1D photonic crystal., 2003,,.		10
178	Comment on "Submillimeter spectroscopic study of concentrated electrolyte solutions as high density plasma―[J. Chem. Phys. 116, 5701 (2002)]. Journal of Chemical Physics, 2003, 118, 9457-9458.	3.0	0
179	Localized relaxation in a glass and the minimum in its orientational polarization contribution. Journal of Chemical Physics, 2002, 117, 1714-1722.	3.0	35
180	Effects of ions on the dielectric permittivity and relaxation rate and the decoupling of ionic diffusion from dielectric relaxation in supercooled liquid and glassy 1-propanol. Journal of Chemical Physics, 2002, 116, 4192-4201.	3.0	29

#	Article	IF	Citations
181	FTIR study of a chiral tilted SmA liquid crystalline phase. Europhysics Letters, 2002, 57, 184-190.	2.0	9
182	The Biaxiality of the Chiral Smectic Subphases in Very Thin Freestanding Films. Ferroelectrics, 2002, 278, 47-55.	0.6	7
183	Orientational Order and Dynamics of Nematic Multipodes Based on Carbosilazane Cores Using Optical and Dielectric Spectroscopy. Macromolecules, 2002, 35, 8601-8608.	4.8	27
184	The Study of the Surface Electroclinic Effect Using Different Aligning Materials. Ferroelectrics, 2002, 278, 151-159.	0.6	4
185	Wideband (from 0 to 1000 cmâ^1) dielectric/FIR spectra of ordinary and heavy water: calculation in terms of the composite hat curved–harmonic oscillator model. Physical Chemistry Chemical Physics, 2002, 4, 5289-5299.	2.8	12
186	Effect of Electric Field on the Correlation Between the Phenyl Ring and the Alkyl Chain of an Antiferroelectric Liquid Crystal Using Polarised FTIR Spectroscopy. Ferroelectrics, 2002, 277, 229-237.	0.6	1
187	Dielectric studies on charge hopping in melanin polymer. Journal of Molecular Structure, 2002, 606, 205-210.	3.6	37
188	Orientation of discotic and ferroelectric liquid crystals in a macroporous silicon matrix. Physics of the Solid State, 2002, 44, 1196-1202.	0.6	5
189	Localized relaxation's strength and its mimicry of glass-softening thermodynamics. Journal of Chemical Physics, 2002, 116, 5908-5909.	3.0	58
190	The concept of two stochastic processes in liquid water and analytical theory of the complex permittivity in the wavenumber range 0–1000 cm–1. Physical Chemistry Chemical Physics, 2001, 3, 5173-5181.	2.8	24
191	Orientational/translational relaxation in aqueous electrolyte solutions: a molecular model for microwave/far-infrared ranges. Physical Chemistry Chemical Physics, 2001, 3, 523-534.	2.8	6
192	A field-reversal method for measuring the parameters of a ferroelectric liquid crystal. Liquid Crystals, 2001, 28, 615-620.	2.2	21
193	Mechanism of the Major Orientation Polarization in Alcohols, and the Effects of Steric Hindrance-, and Dilution-Induced Decrease on H-Bonding. Journal of Physical Chemistry A, 2001, 105, 5061-5070.	2.5	31
194	Dielectric and optical rotatory power investigations of an antiferroelectric liquid crystal 120F1M7 in a homeotropic cell: implications for models of the structure of ferrielectric phases. Liquid Crystals, 2001, 28, 1699-1704.	2.2	17
195	ALIGNMENT INSTABILITY INDUCED BY IRRADIATION OF VISIBLE LIGHT IN FRUSTOELECTRIC LIQUID CRYSTALLINE CELLS SHOWING THE V-SHAPED SWITCHING. Molecular Crystals and Liquid Crystals, 2001, 366, 785-795.	0.3	0
196	Dependence of the molecular orientational states on the surface conditions for the "V-shaped switching―in a ferroelectriclike liquid crystal sample. Physical Review E, 2001, 64, 040701.	2.1	9
197	Optical rotatory power of different phases of an antiferroelectric liquid crystal and implications for models of structure. Physical Review E, 2001, 63, 051708.	2.1	24
198	Surface molecular alignment by in-plane anchoring in the cell showing the V-shaped switching. Applied Physics Letters, 2001, 79, 940-942.	3.3	8

#	Article	IF	CITATIONS
199	Effects of induced steric hindrance on the dielectric behavior and H bonding in the supercooled liquid and vitreous alcohol. Journal of Chemical Physics, 2001, 114, 4634.	3.0	79
200	Nonexponential dielectric relaxation dynamics in supercooled liquid and glassy states of isoamyl bromide and 2-methylpentane mixtures. Journal of Chemical Physics, 2001, 114, 2718-2726.	3.0	9
201	Nature of the boson peak in Raman spectra of sodium borate glass systems: influence of structural and chemical fluctuations and intermolecular interactions. Journal of Raman Spectroscopy, 2000, 31, 819-825.	2.5	10
202	Dielectric and pyroelectric studies of an antiferroelectric liquid crystal. Crystallography Reports, 2000, 45, 682-686.	0.6	2
203	On the V-shaped switching in antiferroelectric liquid crystals. Ferroelectrics, 2000, 246, 35-42.	0.6	13
204	Ferrielectric liquid crystal subphase studied by polarized Fourier-transform infrared spectroscopy. Physical Review E, 2000, 62, 2269-2278.	2.1	17
205	Field-induced phase transitions in an antiferroelectric liquid crystal using the pyroelectric effect. Physical Review E, 2000, 62, 2279-2287.	2.1	28
206	A comparison of orientational behaviour and rotational bias in SmC*, SmCa* and SmCî³* phases of an antiferroelectric liquid crystal studied by FT-IR spectroscopy. Ferroelectrics, 2000, 244, 175-182.	0.6	1
207	The exponential dielectric relaxation dynamics in a secondary alcohol's supercooled liquid and glassy states. Journal of Chemical Physics, 2000, 112, 3262-3266.	3.0	72
208	Alignment instability caused by anchoring of the in-plane directors to the rubbing direction in the V-shaped switching. Journal of Materials Chemistry, 2000, 10, 2791-2794.	6.7	11
209	Polarized ftir spectroscopic study of a high-temperature ferrielectric phase of an antiferroelectric liquid crystal. Ferroelectrics, 2000, 245, 27-34.	0.6	1
210	The relaxation phenomena in antiferroelectric and ferrielectric phases. Ferroelectrics, 2000, 245, 91-99.	0.6	3
211	A comparison of orientational behaviour and rotational bias in SmC*, SmCa* and SmCî³* phases of an antiferroelectric liquid crystal studied by FT-IR spectroscopy. Ferroelectrics, 2000, 244, 183-190.	0.6	3
212	Investigation of the thickness mode in surface stabilized ferroelectric liquid crystal cells. Liquid Crystals, 1999, 26, 717-722.	2.2	10
213	Rotational bias of an antiferroelectric liquid crystal studied by polarized Fourier transform infrared spectroscopy. Physical Review E, 1999, 59, 551-555.	2.1	34
214	A comparison of the far-infrared and low-frequency Raman spectra of glass-forming liquids. Journal of Molecular Structure, 1999, 479, 111-122.	3.6	17
215	Infrared study of the orientational order of the mesogen in discotic phases of hexapentyloxytriphenylene and hexaheptyloxytriphenylene. Journal of Molecular Structure, 1999, 511-512, 271-276.	3.6	6
216	Molecular dynamics of iso-amyl bromide by dielectric spectroscopy, and the effects of a nonpolar solvent, 2-methylpentane, on the spectral features. Journal of Chemical Physics, 1999, 111, 10979-10985.	3.0	20

#	Article	IF	Citations
217	Observation of a possible random ferroelectric liquid crystal phase. Journal of Materials Chemistry, 1999, 9, 2967-2969.	6.7	44
218	Observation of an $SmC\hat{l}_{\pm}^*$ phase in an antiferroelectric liquid crystal using pyroelectrics and dielectrics. Journal of Materials Chemistry, 1999, 9, 1383-1385.	6.7	15
219	Multiplexing performance of a FLC with high spontaneous polarization in the bookshelf structure. Ferroelectrics, 1998, 213, 125-132.	0.6	0
220	The relaxation processes in helical antiferroelectric liquid crystals. Ferroelectrics, 1998, 213, 101-108.	0.6	4
221	The investigation of the relaxation processes in antiferroelectric liquid crystals by electro-optic spectroscopy. Applied Physics Letters, 1998, 72, 1667-1669.	3.3	59
222	Observation of an anchoring transition in a discotic liquid crystal. Europhysics Letters, 1998, 44, 198-204.	2.0	33
223	The investigation of the relaxation processes in antiferroelectric liquid crystals by broad band dielectric and electro-optic spectroscopy. Liquid Crystals, 1998, 25, 241-252.	2.2	123
224	3-D orientation and switching studies of FLCs using ATR FTIR spectroscopy. Ferroelectrics, 1998, 214, 1-8.	0.6	3
225	Polarised infrared spectroscopy for the study of 3-dimensional orientations of FLC molecules. Ferroelectrics, 1998, 214, 83-91.	0.6	5
226	Observation of exotic subphases in an antiferroelectric liquid crystal. Ferroelectrics, 1998, 212, 239-247.	0.6	2
227	Observation and investigation of the ferrielectric subphase with highqTparameter. Physical Review E, 1997, 55, 4345-4353.	2.1	91
228	Investigation of the Ferrielectric Subphase with q _T > 1/2 under Bias Voltage. Molecular Crystals and Liquid Crystals, 1997, 301, 215-220.	0.3	3
229	Dynamics of Collective and Molecular Modes of a Ferroelectric Liquid Crystal in Confined Geometry Using Dielectric Spectroscopy. Physical Review Letters, 1997, 79, 249-252.	7.8	41
230	Orientational Studies of Discotic Liquid Crystals using Fourier Transform Infrared Spectroscopy. Molecular Crystals and Liquid Crystals, 1997, 301, 111-121.	0.3	5
231	Observation and Investigation of the Ferrielectric Subphase with qT > $1/2$. Molecular Crystals and Liquid Crystals, 1997, 302, 93-98.	0.3	1
232	Polarization and dielectric properties of an antiferroelectric liquid crystal. Liquid Crystals, 1997, 23, 77-86.	2.2	17
233	A Study of Antiferroelectric Liquid Crystals using the Pyroelectric Technique. Molecular Crystals and Liquid Crystals, 1997, 301, 189-194.	0.3	3
234	Study of orientational ordering in discotic liquid-crystalline thin films by using Fourier transform infra-red spectroscopy. Supramolecular Science, 1997, 4, 529-534.	0.7	10

#	Article	IF	CITATIONS
235	Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA. Colloid and Polymer Science, 1997, 275, 323-332.	2.1	101
236	Hydration and plasticization effects in cellulose acetate: molecular motion and relaxation. Faraday Discussions, 1996, 103, 255.	3.2	41
237	<title>Molecular tilt angle and order parameter of low-molar-mass ferroelectric liquid crystal using IR spectroscopy</title> ., 1996,,.		2
238	Low frequency vibrational spectroscopy of highly viscous and highly polar liquids. Journal of Molecular Liquids, 1996, 69, 1-17.	4.9	11
239	Primary and secondary relaxations in aliphatic alcohols: Complex dielectric permittivity spectra of 5-methyl 2-hexanol. Journal of Molecular Liquids, 1996, 69, 19-29.	4.9	1
240	Study of the molecular orientation in a chiral smectic liquid crystal mixture using infrared dichroism. Ferroelectrics, 1996, 180, 105-115.	0.6	2
241	Angular dependence of absorbance on the polarization angle of an IR beam in liquid crystals. Liquid Crystals, 1996, 21, 147-151.	2.2	28
242	Pyroelectric properties of an antiferroelectric liquid crystal. Journal of Physics Condensed Matter, 1996, 8, L551-L556.	1.8	5
243	The influence of surface structure on the discotic liquid crystalline alignment. an infrared spectroscopy study. Advanced Materials, 1995, 7, 919-922.	21.0	69
244	Dispersive fourier transform far-infrared spectroscopy of aliphatic ketones. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 533-548.	3.9	7
245	Pyroelectric properties of ferroelectric liquid crystal cells with chevron, bookshelf, and helical structures. Journal of Applied Physics, 1995, 77, 1201-1206.	2.5	15
246	In-plane anchoring energy in ferroelectric liquid crystals: Evidence for its existence and measurement. Physical Review E, 1995, 52, R17-R20.	2.1	11
247	Study of the Ionic Dynamics in a Polysiloxane Ferroelectric Liquid Crystal Polymer Using Optical Contrast and Dielectric Spectroscopy. Molecular Crystals and Liquid Crystals, 1995, 261, 501-511.	0.3	4
248	Investigation of the TGBA* phase in a ferroelectric liquid crystal using dielectric spectroscopy. Journal of Physics Condensed Matter, 1995, 7, 7443-7452.	1.8	24
249	An investigation of the field-induced ferrielectric subphases in antiferroelectric liquid crystals. Journal of Physics Condensed Matter, 1995, 7, L351-L360.	1.8	27
250	In Spectroscopic Study of the Electric Field Induced Phase Transition of a Ferroelectrically Switchable Columnar Dibenzopyrene. Molecular Crystals and Liquid Crystals, 1995, 263, 293-303.	0.3	9
251	Degradation of Optical Bistability in Surface Stabilized Ferroelectric Liquid Crystal (SSFLC) Cells. Molecular Crystals and Liquid Crystals, 1995, 263, 169-177.	0.3	5
252	Study of the order parameter of thin films of a main-chain discotic liquid crystalline polymer using Fourier transform infra-red spectroscopy. Supramolecular Science, 1995, 2, 51-58.	0.7	7

#	Article	IF	CITATIONS
253	Dielectric Response of Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1994, 33, 2648-2650.	1.5	43
254	Dielectric response of surface stabilized ferroelectric liquid crystal cells. Physical Review E, 1994, 50, 4763-4772.	2.1	51
255	Dielectric and electro-optical studies of a ferroelectric copolysiloxane. Physical Review B, 1994, 50, 16346-16356.	3.2	46
256	Pyroelectric and electro-optical effects in the SmC* phase of a polysiloxane liquid crystal. Journal of Applied Physics, 1994, 75, 728-733.	2.5	45
257	On the relationship between electro-optic and dielectric parameters of a smectic Câ^— ferroelectric liquid crystal. Liquid Crystals, 1994, 17, 741-744.	2.2	3
258	Dielectric study of the electroclinic effect in the smectic-Aphase. Physical Review E, 1994, 50, 2109-2114.	2.1	12
259	Characterization of model anaerobic adhesive cure using real-time fourier transform infrared spectroscopy and dielectric spectroscopy. Journal of Applied Polymer Science, 1994, 52, 737-746.	2.6	9
260	Dielectric spectroscopy of anaerobic adhesive cure. International Journal of Adhesion and Adhesives, 1994, 14, 211-236.	2.9	10
261	Wide-band dielectric spectroscopy of hydrated poly(hydroxyethyl methacrylate). Polymer, 1994, 35, 227-234.	3.8	31
262	Investigations into the cure of model anaerobic adhesives using dielectric spectroscopy. Polymer, 1994, 35, 939-948.	3.8	5
263	Infrared spectroscopic study of a phenyl benzoate side group—methacrylate main chain polymeric liquid crystal. Liquid Crystals, 1994, 16, 783-803.	2.2	28
264	Optical contrast spectroscopy of ferroelectric liquid crystal cells. Ferroelectrics, 1993, 148, 401-409.	0.6	2
265	Infrared absorption study of hexapentyloxytriphenylene A discotic liquid crystal. Liquid Crystals, 1993, 14, 807-819.	2.2	52
266	Infrared Dichroism and Vibrational Spectroscopy of a Side Chain Polyacrylate Liquid Crystalline Polymer. Molecular Crystals and Liquid Crystals, 1993, 237, 337-350.	0.3	14
267	On the internal field correction in farâ€infrared absorption of highly polar molecules in neat liquids and dilute solutions. Journal of Chemical Physics, 1993, 99, 2506-2510.	3.0	12
268	The high frequency dielectric response of a ferroelectric liquid crystal. Liquid Crystals, 1993, 14, 469-473.	2.2	0
269	DiCl6b: Dielectric relaxation spectroscopy of a model anaerobic adhesive. Ferroelectrics, 1992, 133, 151-158.	0.6	4
270	High-frequency dielectric behavior of a ferroelectric liquid crystal near the smectic-C*–smectic-Aphase transition. Physical Review A, 1992, 46, 4852-4858.	2.5	12

#	Article	IF	CITATIONS
271	Study of the molecular tilt angle and the order parameter of a ferroelectric liquid crystal mixture using IR spectroscopy. Liquid Crystals, 1992, 12, 1005-1012.	2.2	33
272	Complex permittivity measurements of acetone in the frequency region 50–310 GHz. Molecular Physics, 1991, 72, 353-361.	1.7	19
273	Dielectric relaxation and libration spectroscopy of some aliphatic ketones and their molecular behavior. The Journal of Physical Chemistry, 1991, 95, 6142-6148.	2.9	27
274	Dielectric spectroscopy and molecular dynamics of methylene chloride CH2Cl2. Journal of Molecular Liquids, 1991, 49, 1-16.	4.9	7
275	Mechanical load cell based on cavity-controlled microwave oscillators. IEEE Transactions on Microwave Theory and Techniques, 1991, 39, 1611-1616.	4.6	5
276	Correlated reorientations in NH4Al(SO4)2.12H2O single. Journal of Physics Condensed Matter, 1990, 2, 5433-5438.	1.8	9
277	Molecular dynamics of a liquid crystal in decalin glass at radio and far infrared frequencies. Journal of Chemical Physics, 1989, 90, 1974-1979.	3.0	3
278	Millimeter and submillimeter laser spectroscopy of water. Chemical Physics Letters, 1989, 155, 153-156.	2.6	30
279	A computer-controlled submillimeter Fourier spectrometer. IEEE Transactions on Instrumentation and Measurement, 1989, 38, 85-91.	4.7	4
280	Far infrared spectra of octyl and nonyl cyanobiphenyl liquid crystals. Journal of Molecular Liquids, 1989, 43, 109-123.	4.9	5
281	A graphical method for determining the parameters of a diffusion profile in silicon by infrared reflection spectroscopy. Solid-State Electronics, 1989, 32, 69-76.	1.4	24
282	Power absorption coefficient constants for water, acetonitrile, and methylene chloride at far infrared wavelengths. Journal of Infrared, Millimeter and Terahertz Waves, 1989, 10, 847-867.	0.6	9
283	Submillimetre wave spectroscopy of 4-n-alkyl-4′-cyano biphenyl liquid crystals. Liquid Crystals, 1989, 4, 529-542.	2.2	12
284	Millimetre- and submillimetre-wave laser spectrometer for liquids: power and refractive index spectra of acetonitrile and methyl iodide. Journal of Physics E: Scientific Instruments, 1989, 22, 749-755.	0.7	8
285	A high-frequency rotational mode in acetonitrile and methyl iodide in dilute solutions. Chemical Physics Letters, 1988, 150, 211-216.	2.6	6
286	On the temperature dependence of the equal frictions itinerant oscillator model. Molecular Physics, 1988, 63, 477-496.	1.7	11
287	Far infrared spectra of the tetrahydrocarbons CBr4 and CCl4. Journal of Chemical Physics, 1987, 87, 3357-3359.	3.0	7
288	A new far-infrared broadband absorption in non-rigid polar molecules. Chemical Physics Letters, 1987, 139, 77-81.	2.6	4

#	Article	IF	Citations
289	The dynamics of liquid water: Simulation and submillimeter spectroscopy. Journal of Molecular Liquids, 1987, 34, 285-306.	4.9	16
290	Dielectric absorption in hydrocarbon polymers with non-polar additives. Chemical Physics, 1987, 115, 319-323.	1.9	2
291	Some new FIR laser lines of optically pumped ¹⁶ OH, ¹²¹² 1212121212123Br spectroscopy of water and acetonitrile. IEEE lournal of Ouantum Electronics. 1986. 22. 1123-1130.	p>CH& , <sup&g< td=""><td>lt;inf>3< t;12</td></sup&g<>	lt;inf>3< t;12
292	Inertia-corrected bud \tilde{A}^3 treatment of dielectric relaxation in polar molecules: Application to the fir spectrum of acetonttrile and hexanone-2. Chemical Physics Letters, 1986, 129, 375-381.	2.6	16
293	Low-temperature dielectric absorption of polypropylene containing light alkanes. Chemical Physics, 1986, 106, 293-301.	1.9	1
294	Decrease in frequency of maximum far-infra-red power absorption of polar fluids with temperature. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1986, 8, 369-378.	0.4	4
295	Brownian motion in a periodic potential: Application to dielectric relaxation. European Physical Journal B, 1985, 58, 187-198.	1.5	25
296	Nonlinear Bud� model for dielectric relaxation: Comparison with new experimental data. European Physical Journal B, 1985, 61, 357-366.	1.5	22
297	Variable Angle Submillimetre Laser Reflection Spectroscopy of Semiconductors. Physica Scripta, 1984, 30, 152-156.	2.5	0
298	Submillimetre laser spectroscopy of intensely absorbing liquids. Journal of Molecular Liquids, 1984, 29, 37-43.	4.9	6
299	Microwave and far-infra-red dielectric absorption inn-alkanes. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1983, 2, 751-762.	0.4	9
300	Dielectric spectra of supercooled halogenobenzeneâ€decalin solutions: A single particle site model for relaxation and resonant behaviors. Journal of Chemical Physics, 1983, 79, 4624-4628.	3.0	15
301	Pressure and temperature dependence of the permittivity and density of 1,1â€dimethoxyâ€2â€propanone. Journal of Chemical Physics, 1983, 79, 6182-6188.	3.0	4
302	Molecular dynamics of methanol. Molecular Physics, 1983, 50, 935-947.	1.7	28
303	Far-infrared study of reorientational motion in diphenyl ether. Journal of the Chemical Society, Faraday Transactions 2, 1982, 78, 1649.	1.1	10
304	On the analysis of dielectric absorption spectra in terms of correlation functions. Molecular Physics, 1982, 47, 23-31.	1.7	4
305	The complex permittivity of six n-alkanes; measurements in the far infrared. Journal Physics D: Applied Physics, 1982, 15, 1279-1283.	2.8	9
306	Submillimetre laser and interferometric spectroscopy of the alkyl alcohols. Chemical Physics Letters, 1982, 92, 528-532.	2.6	19

#	Article	IF	CITATIONS
307	Dielectric relaxation of nitroalkanes in dilute solutions. Advances in Molecular Relaxation and Interaction Processes, 1982, 22, 177-186.	0.5	4
308	Molecular dynamics of CH2Cl2: temperature dependences of the far infra-red spectrum. Part 1: experimental and simulation. Advances in Molecular Relaxation and Interaction Processes, 1982, 22, 79-87.	0.5	6
309	Pressure, Temperature, and Frequency Dependence of the Dielectric Properties of Strontium Barium Niobate. Physica Status Solidi A, 1982, 74, 225-232.	1.7	19
310	The pressure and temperature dependence of the complex permittivity of heptanol isomers. Journal Physics D: Applied Physics, 1981, 14, 733-746.	2.8	36
311	Dielectric anomalies in barium strontium niobate. Ferroelectrics, 1981, 38, 865-868.	0.6	13
312	The pressure and temperature dependence of the static permittivity and density of heptanol isomers. Journal Physics D: Applied Physics, 1978, 11, 545-559.	2.8	40
313	Calibration of a metallic bellows dilatometer. Journal of Physics E: Scientific Instruments, 1977, 10, 874-876.	0.7	9
314	Dielectric Relaxation in Some Substituted Benzaldehydes in Benzene at Different Temperatures. Bulletin of the Chemical Society of Japan, 1976, 49, 2869-2871.	3.2	7
315	Dielectric Study of the Intermolecular Association of Alcohols in Solutions of Benzene. Bulletin of the Chemical Society of Japan, 1976, 49, 1824-1828.	3.2	24
316	Errors due to lead impedance in high pressure measurements of relative permittivity. Journal of Physics E: Scientific Instruments, 1976, 9, 735-738.	0.7	5
317	The dielectric polarizability of benzene as a function of temperature and pressure. Journal of Chemical Physics, 1976, 64, 2226-2228.	3.0	27
318	Dielectric Relaxation in Substituted Benzaldehydes. Bulletin of the Chemical Society of Japan, 1975, 48, 2551-2556.	3.2	9
319	The electrical conductivity of benzene subjected to hydrostatic pressure. Journal Physics D: Applied Physics, 1975, 8, L56-L58.	2.8	2
320	Dielectric Relaxation and Molecular Structure. IV. Dielectric Relaxation and Hydrogen Bonding in Chloroanilines. Bulletin of the Chemical Society of Japan, 1973, 46, 1112-1113.	3.2	4
321	Dielectric Relaxation and Molecular Structure. III. Dielectric Relaxation Study of Some Anilines in Benzene Solutions at Different Temperatures. Bulletin of the Chemical Society of Japan, 1973, 46, 17-20.	3.2	12
322	Critical analysis of Gopala Krishna's method for determining the dielectric relaxation time. Transactions of the Faraday Society, 1970, 66, 1087.	0.9	7
323	Dielectric Relaxation and Molecular Structure. II Dielectric Relaxation in Dibutyl Ether, Diphenyl Ether and Benzophenone in Various Nonpolar Solvents. Bulletin of the Chemical Society of Japan, 1970, 43, 2313-2316.	3.2	10
324	Dielectric Relaxation and Molecular Structure. I. Dielectric Relaxation in Substituted Anilines. Bulletin of the Chemical Society of Japan, 1970, 43, 2307-2312.	3.2	15

#	Article	IF	CITATIONS
325	Large optical anisotropy in the structure of 1D photonic crystal fabricated by vertical etching of silicon. , 0 , , .		2
326	Renewed focus on the small temperature change of smectic layer spacing in ferroelectric and antiferroelectric LCs. Liquid Crystals, 0 , $1-13$.	2.2	4
327	Electrical and electro-optical parameters of $4\hat{E}^1$ -octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles. Liquid Crystals, 0, , 1-11.	2.2	14
328	The N $<$ sub $>$ TB $<$ /sub $>$ phase in an achiral asymmetrical bent-core liquid crystal terminated with symmetric alkyl chains. Liquid Crystals, 0, , 1-10.	2.2	13
329	Ferrielectric six-layer () and several electric-field-induced subphases in AS657 studied by complementary methods, electric-field-induced birefringence and microbeam resonant X-ray scattering. Liquid Crystals, 0, , 1-19.	2.2	6