Giovanni Palmisano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1397784/publications.pdf

Version: 2024-02-01

264 papers

10,790 citations

52 h-index 43889 91 g-index

292 all docs 292 docs citations

times ranked

292

11543 citing authors

#	Article	IF	CITATIONS
1	Photocatalysis: a promising route for 21st century organic chemistry. Chemical Communications, 2007, , 3425.	4.1	613
2	High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2011, 2, 1311.	7.4	496
3	Nanostructured Rutile TiO ₂ for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water. Journal of the American Chemical Society, 2008, 130, 1568-1569.	13.7	430
4	Advances in selective conversions by heterogeneous photocatalysis. Chemical Communications, 2010, 46, 7074.	4.1	344
5	Oxidation of Alcohols with o-lodoxybenzoic Acid in DMSO: A New Insight into an Old Hypervalent lodine Reagent. Journal of Organic Chemistry, 1995, 60, 7272-7276.	3.2	337
6	Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 224-245.	11.6	258
7	[Gd-AAZTA]-:Â A New Structural Entry for an Improved Generation of MRI Contrast Agents. Inorganic Chemistry, 2004, 43, 7588-7590.	4.0	217
8	Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal–Organic Frameworks through Ligand Modification. Journal of the American Chemical Society, 2012, 134, 12830-12843.	13.7	184
9	Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Dioxide Catalyst. Advanced Synthesis and Catalysis, 2007, 349, 964-970.	4.3	180
10	Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chemistry, 2009, 11, 510.	9.0	167
11	An asymmetric approach to coumarin anticoagulants via hetero-Diels–Alder cycloaddition. Tetrahedron: Asymmetry, 2001, 12, 707-709.	1.8	162
12	Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 2010, 132, 7902-7904.	13.7	140
13	Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids:Â Asymmetric Synthesis of (â^²)-Horsfiline. Journal of Organic Chemistry, 2001, 66, 8447-8453.	3.2	131
14	High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl–aryl couplings. Tetrahedron Letters, 2005, 46, 2267-2271.	1.4	131
15	Solar hydrogen: fuel of the near future. Energy and Environmental Science, 2010, 3, 279.	30.8	126
16	Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catalysis Today, 2007, 122, 118-127.	4.4	122
17	Oxidation of Aromatic Alcohols in Irradiated Aqueous Suspensions of Commercial and Homeâ€Prepared Rutile TiO ₂ : A Selectivity Study. Chemistry - A European Journal, 2008, 14, 4640-4646.	3.3	122
18	BIPV: merging the photovoltaic with the construction industry. Progress in Photovoltaics: Research and Applications, 2010, 18, 61-72.	8.1	119

#	Article	IF	Citations
19	One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Letters, 2006, 47, 6993-6995.	1.4	118
20	Intramolecular Pd(II)-Catalyzed Cyclization of Propargylamides: Straightforward Synthesis of 5-Oxazolecarbaldehydes. Journal of Organic Chemistry, 2008, 73, 4746-4749.	3.2	104
21	Titania Photocatalysts for Selective Oxidations in Water. ChemSusChem, 2011, 4, 1431-1438.	6.8	100
22	Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals. Journal of Physical Chemistry Letters, 2015, 6, 1968-1981.	4.6	99
23	Silica-based hybrid coatings. Journal of Materials Chemistry, 2009, 19, 3116.	6.7	98
24	Photocatalytic Selective Oxidation of 5-(Hydroxymethyl)-2-furaldehyde to 2,5-Furandicarbaldehyde in Water by Using Anatase, Rutile, and Brookite TiO ₂ Nanoparticles. ACS Sustainable Chemistry and Engineering, 2013, 1, 456-461.	6.7	96
25	Environmentally Friendly Photocatalytic Oxidation of Aromatic Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO2. Catalysis Letters, 2008, 126, 58-62.	2.6	89
26	Oxindole alkaloids. A novel non-biomimetic entry to (\hat{a})-Horsfiline Tetrahedron: Asymmetry, 1996, 7, 1-4.	1.8	87
27	[GdPCP2A(H2O)2]-: A Paramagnetic Contrast Agent Designed for Improved Applications in Magnetic Resonance Imaging. Journal of Medicinal Chemistry, 2000, 43, 4017-4024.	6.4	86
28	Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Chemical Communications, 2006, , 1012.	4.1	81
29	Oxidation of amines in the presence of ruthenium complexes: molecular oxygen and iodosylbenzene as oxidants. Journal of Molecular Catalysis, 1989, 50, 333-341.	1.2	79
30	Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide. Applied Catalysis A: General, 2008, 349, 182-188.	4.3	79
31	Synthesis of vanillin in water by TiO2 photocatalysis. Applied Catalysis B: Environmental, 2012, 111-112, 555-561.	20.2	79
32	Synthesis of carboranyl derivatives of alkynyl glycosides as potential BNCT agents. Tetrahedron, 1999, 55, 14123-14136.	1.9	78
33	Halloysite nanotube with fluorinated lumen: Non-foaming nanocontainer for storage and controlled release of oxygen in aqueous media. Journal of Colloid and Interface Science, 2014, 417, 66-71.	9.4	76
34	An Expeditious Procedure for the Isolation of Ingenol from the Seeds of Euphorbia lathyris. Journal of Natural Products, 1999, 62, 76-79.	3.0	75
35	Designing Novel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Relaxometric Characterization of three Gadolinium(III) Complexes Based on Functionalized Pyridine-Containing Macrocyclic Ligands. Helvetica Chimica Acta, 2003, 86, 615-632.	1.6	75
36	Nanochemistry aspects of titania in dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 838.	30.8	75

#	Article	IF	CITATIONS
37	Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide. Applied Catalysis A: General, 2008, 349, 189-197.	4.3	74
38	Gold(I)-Catalyzed Cyclization of β-Allenylhydrazones: An Efficient Synthesis of Multisubstituted <i>N</i> -Aminopyrroles. Organic Letters, 2010, 12, 4396-4399.	4.6	74
39	On the Mechanism of Nitrosoareneâ^'Alkyne Cycloaddition. Journal of the American Chemical Society, 2009, 131, 653-661.	13.7	70
40	Non-covalent Conjugates between Cationic Polyamino Acids and GdIII Chelates: A Route for Seeking Accumulation of MRI-Contrast Agents at Tumor Targeting Sites. Chemistry - A European Journal, 2000, 6, 2609-2617.	3.3	69
41	The Aldol Reaction under High-Intensity Ultrasound: A Novel Approach to an Old Reaction. European Journal of Organic Chemistry, 2003, 2003, 4438-4444.	2.4	67
42	Novel Paramagnetic Macromolecular Complexes Derived from the Linkage of a Macrocyclic Gd(III) Complex to Polyamino Acids through a Squaric Acid Moiety. Bioconjugate Chemistry, 1999, 10, 192-199.	3.6	66
43	A new class of heterogeneous Pd catalysts for synthetic organic chemistry. Catalysis Science and Technology, 2011, 1, 736.	4.1	63
44	Home-prepared anatase, rutile, and brookite TiO2 for selective photocatalytic oxidation of 4-methoxybenzyl alcohol in water: reactivity and ATR-FTIR study. Photochemical and Photobiological Sciences, 2009, 8, 663-669.	2.9	62
45	The Suzuki homocoupling reaction under high-intensity ultrasound. Ultrasonics Sonochemistry, 2005, 12, 91-94.	8.2	61
46	Synthesis of Indole Derivatives with Biological Activity by Reactions Between Unsaturated Hydrocarbons and N-Aromatic Precursors. Current Organic Chemistry, 2010, 14, 2409-2441.	1.6	61
47	Power ultrasound in metal-assisted synthesis: From classical Barbier-like reactions to click chemistry. Ultrasonics Sonochemistry, 2011, 18, 836-841.	8.2	60
48	Heck Reactions with Very Low Ligandless Catalyst Loads Accelerated by Microwaves or Simultaneous Microwaves/Ultrasound Irradiation. Advanced Synthesis and Catalysis, 2007, 349, 2338-2344.	4.3	57
49	One-pot synthesis of meridianins and meridianin analogues via indolization of nitrosoarenes. Tetrahedron, 2010, 66, 1280-1288.	1.9	57
50	A straightforward entry into enantiomerically enriched \hat{l}^2 -amino- \hat{l}_\pm -hydroxyphosphonic acid derivatives. Tetrahedron: Asymmetry, 1998, 9, 745-748.	1.8	55
51	Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 132-164.	11.6	54
52	2-(Tributylstannyl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-indole: Synthesis and use as a 1H-indol-2-yl-anion equivalent. Helvetica Chimica Acta, 1993, 76, 2356-2366.	1.6	53
53	The Chemistry of Coumarin Derivatives. Part VI. Diels-Alder Trapping of 3-Methylene-2,4-chromandione. A New Entry to Substituted Pyrano[3,2-c]coumarins. Journal of Organic Chemistry, 1994, 59, 5556-5564.	3.2	53
54	The chemical effects of molecular sol–gel entrapment. Chemical Society Reviews, 2007, 36, 932-940.	38.1	52

#	Article	IF	Citations
55	Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO 2 films on glass. Applied Surface Science, 2017, 420, 83-93.	6.1	50
56	Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt, Au, Pd and Ag loaded TiO 2 catalysts. Catalysis Today, 2017, 281, 53-59.	4.4	49
57	Cyclometallation of indole derivatives: cyclopalladation of gramine and 1-methyl gramine and CO insertion. Journal of Organometallic Chemistry, 1997, 527, 93-102.	1.8	47
58	Graphite-supported TiO2 for 4-nitrophenol degradation in a photoelectrocatalytic reactor. Chemical Engineering Journal, 2009, 155, 339-346.	12.7	47
59	Efficient Synthesis of N-Methoxyindoles via Alkylative Cycloaddition of Nitrosoarenes with Alkynes. Journal of Organic Chemistry, 2006, 71, 823-825.	3.2	46
60	Waste-Free Electrochemical Oxidation of Alcohols in Water. Advanced Synthesis and Catalysis, 2006, 348, 2033-2037.	4.3	46
61	Photocatalytic green synthesis of piperonal in aqueous TiO2 suspension. Applied Catalysis B: Environmental, 2014, 144, 607-613.	20.2	46
62	Contrast Agents for Magnetic Resonance Imaging: A Novel Route to Enhanced Relaxivities Based on the Interaction of a GdIII Chelate with Poly- \hat{l}^2 -cyclodextrins. Chemistry - A European Journal, 1999, 5, 1253-1260.	3.3	45
63	Rapid access to the highly oxygenated aspidosperma alkaloids vindoline, vindorosine, and cathovaline. Journal of the Chemical Society Chemical Communications, 1984, , 909.	2.0	44
64	One-pot sequential synthesis of isocyanates and urea derivatives via a microwave-assisted Staudinger–aza-Wittig reaction. Beilstein Journal of Organic Chemistry, 2013, 9, 2378-2386.	2.2	43
65	The chemistry of coumarin derivatives, part 2. Reaction of 4-hydroxycoumarin with ?,?-unsaturated aldehydes. Helvetica Chimica Acta, 1990, 73, 1865-1878.	1.6	42
66	Base-modified pyrimidine nucleosides. Efficient entry to 6-derivatized uridines by sn-pd transmetallation-coupling process. Tetrahedron, 1993, 49, 2533-2542.	1.9	42
67	Electrodes Functionalized with the 2,2,6,6‶etramethylpiperidinyloxy Radical for the Wasteâ€Free Oxidation of Alcohols. ChemCatChem, 2015, 7, 552-558.	3.7	42
68	Micro-mesoporous N-doped brookite-rutile TiO2 as efficient catalysts for water remediation under UV-free visible LED radiation. Journal of Catalysis, 2017, 346, 109-116.	6.2	42
69	Fe(II)-Induced Fragmentation Reaction of ?-Hydroperoxy-?,?-enones. Part 1. Synthesis of 13(14?8)-abeo-Steroids. Helvetica Chimica Acta, 1987, 70, 701-716.	1.6	41
70	A Straightforward Entry into Polyketide Monoprenylated Furanocoumarins and Pyranocoumarins 1. Journal of Natural Products, 1999, 62, 1627-1631.	3.0	40
71	Synthesis of Furocoumarins via Rhodium(II)-Catalysed Heterocyclisation of 3-Diazobenzopyran-2,4-(3H)-dione with Terminal Alkynes. Synthesis, 2001, 2001, 0735-0740.	2.3	40
72	Platinum(II) and technetium(I) complexes anchored to ethynylestradiol: a way to drug targeting and delivery. Inorganica Chimica Acta, 2004, 357, 2157-2166.	2.4	40

#	Article	IF	CITATIONS
73	Advances in anti-scale magnetic water treatment. Environmental Science: Water Research and Technology, 2015, 1, 408-425.	2.4	40
74	Synthesis and Evaluation of Phorboid 20-Homovanillates:  Discovery of a Class of Ligands Binding to the Vanilloid (Capsaicin) Receptor with Different Degrees of Cooperativity. Journal of Medicinal Chemistry, 1996, 39, 3123-3131.	6.4	39
75	Optical Properties of TiO2 Suspensions:  Influence of pH and Powder Concentration on Mean Particle Size. Industrial & Description of the Size of the Size of the Size of TiO2 Suspensions: 100 Size of TiO2 Size of TiO	3.7	39
76	Threeâ€Component Indiumâ€Mediated Domino Allylation of 1 <i>H</i> àâ€Indoleâ€3â€carbaldehyde with Electronâ€Rich (Hetero)arenes: Highly Efficient Access to Variously Functionalized Indolylbutenes. European Journal of Organic Chemistry, 2008, 2008, 2801-2807.	2.4	38
77	Self-assembled titania–silica–sepiolite based nanocomposites for water decontamination. Journal of Materials Chemistry, 2009, 19, 2070.	6.7	38
78	Fast, Solvent-Free, Microwave-Promoted Friedl \tilde{A}^{μ} der Annulation with a Reusable Solid Catalyst. Synthetic Communications, 2009, 40, 120-128.	2.1	38
79	Sol-gel entrapped visible light photocatalysts for selective conversions. RSC Advances, 2014, 4, 18341-18346.	3.6	38
80	(Pentamethylcyclopentadienyl)Iridium Dichloride Dimer {[IrCp*Cl ₂] ₂ }: A Novel Efficient Catalyst for the Cycloisomerizations of Homopropargylic Diols and Nâ€Tethered Enynes. Advanced Synthesis and Catalysis, 2011, 353, 1908-1912.	4.3	37
81	Selective oxidation of phenol and benzoic acid in water via home-prepared TiO2 photocatalysts: Distribution of hydroxylation products. Applied Catalysis A: General, 2012, 441-442, 79-89.	4.3	35
82	Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes. Applied Catalysis B: Environmental, 2013, 132-133, 535-542.	20.2	35
83	Aspidosperma alkaloids. Conversion of tabersonine into vindoline. Journal of the Chemical Society Perkin Transactions 1, 1987, , 155.	0.9	34
84	The chemistry of coumarin derivatives. Part 3. Synthesis of 3-alkyl-4-hydroxycoumarins by reductive fragmentation of 3,3?-alkyiidene-4,4?-dihydroxybis[coumarins]. Helvetica Chimica Acta, 1991, 74, 1451-1458.	1.6	34
85	Expeditious N-monoalkylation of 1,4,7,10-tetraazacyclododecane (cyclen) via formamido protection. Tetrahedron Letters, 2000, 41, 6527-6530.	1.4	34
86	Convolutamydine A: the first authenticated absolute configuration and enantioselective synthesis. Tetrahedron: Asymmetry, 2006, 17, 3070-3074.	1.8	34
87	E-beam evaporated TiO 2 and Cu-TiO 2 on glass: Performance in the discoloration of methylene blue and 2-propanol oxidation. Applied Catalysis A: General, 2016, 526, 191-199.	4.3	34
88	Photocatalytic ozonation under visible light for the remediation of water effluents and its integration with an electro-membrane bioreactor. Chemosphere, 2018, 209, 534-541.	8.2	33
89	(-)- \hat{l}^2 -Pinene as chiral promoter. Stereospecific access to (-)- \hat{l}^3 -amino- \hat{l}^2 ()-hydroxybutyric acid (gabob) and ()-carnitine.2. Tetrahedron, 1985, 41, 5607-5613.	1.9	32
90	Aspidosperma alkaloids cyclization of secodine intermediate: Synthesis of $(\hat{A}\pm)$ -3-oxovincadifformine ethyl ester Tetrahedron, 1994, 50, 6941-6954.	1.9	32

#	Article	IF	Citations
91	CD1a-binding glycosphingolipids stimulating human autoreactive T-cells: synthesis of a family of sulfatides differing in the acyl chain moiety. Tetrahedron, 2002, 58, 8703-8708.	1.9	31
92	Synthesis of C2-symmetrical diamine based on (1R)-(+)-camphor and application to oxidative aryl coupling of naphthols. Tetrahedron: Asymmetry, 2003, 14, 1451-1454.	1.8	31
93	Photocatalytic oxidation of nitrobenzene and phenylamine: Pathways and kinetics. AICHE Journal, 2007, 53, 961-968.	3.6	31
94	Lipase-mediated resolution of 2-cyclohexen-1-ols as chiral buildingblocks en route to eburnane alkaloids. Tetrahedron: Asymmetry, 1992, 3, 775-784.	1.8	30
95	Autoxidation of Tetrazepam in Tablets: Prediction of Degradation Impurities from the Oxidative Behavior in Solution. Journal of Pharmaceutical Sciences, 1992, 81, 183-185.	3.3	30
96	Polyoxygenated coumarins. Oxonium ylides en route to polyoxa-macrocyclic coumarins. Tetrahedron, 1999, 55, 6577-6584.	1.9	30
97	Statistical experimental design-driven discovery of room-temperature conditions for palladium-catalyzed cyanation of aryl bromides. Tetrahedron Letters, 2005, 46, 1815-1818.	1.4	30
98	Synthesis of Modified Ingenol Esters. European Journal of Organic Chemistry, 1999, 1999, 3413-3420.	2.4	29
99	Improved syntheses of bis(\hat{l}^2 -cyclodextrin) derivatives, new carriers for gadolinium complexes. Organic and Biomolecular Chemistry, 2006, 4, 1124.	2.8	29
100	TiO ₂ /ORMOSIL Thin Films Doped with Phthalocyanine Dyes:  New Photocatalytic Devices Activated by Solar Light. Journal of Physical Chemistry C, 2008, 112, 2667-2670.	3.1	29
101	Kinetics of 4-Methoxybenzyl Alcohol Oxidation in Aqueous Solution in a Fixed Bed Photocatalytic Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 6699-6708.	3.7	29
102	A simple, efficient, regioselective and one-pot preparation of N-hydroxy- and N–O-protected hydroxyindoles via cycloaddition of nitrosoarenes with alkynes. Synthetic scope, applications and novel by-products. Tetrahedron, 2013, 69, 10906-10920.	1.9	29
103	NOVEL PARAMAGNETIC MACROMOLECULAR COMPLEXES DERIVED FROM THE LINKAGE OF A MACROCYCLIC Gd(III) COMPLEX TO POLYAMINO ACIDS THROUGH A SQUARIC ACID MOIETY. Bioconjugate Chemistry, 1999, 10, 701-701.	3.6	28
104	Enhancing selectivity in photocatalytic formation of p-anisaldehyde in aqueous suspension under solar light irradiation via TiO2 N-doping. New Journal of Chemistry, 2012, 36, 1762.	2.8	28
105	Filling the gap: Chemistry of 3,5-bis(trifluoromethyl)-1H-pyrazoles. Journal of Fluorine Chemistry, 2012, 139, 53-57.	1.7	28
106	Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative. Environmental Science and Pollution Research, 2014, 21, 11135-11141.	5.3	28
107	Novel cyclometallated Pd(II) and Pt(II) complexes with indole derivatives and their use as catalysts in Heck reaction. Journal of Organometallic Chemistry, 2005, 690, 2017-2026.	1.8	27
108	Synthesis, X-ray structure and reactivity of cyclopalladated complexes of hydrazones of 1H-indole-3-carboxaldehyde. Journal of Organometallic Chemistry, 1995, 488, 79-83.	1.8	26

#	Article	IF	Citations
109	Citrate-stabilized gold nanoparticles hinder fibrillogenesis of a pathological variant of \hat{l}^2 (sub>2-microglobulin. Nanoscale, 2017, 9, 3941-3951.	5.6	26
110	Relating Photoelectrochemistry and Wettability of Sputtered Cu- and N-Doped TiO ₂ Thin Films via an Integrated Approach. Journal of Physical Chemistry C, 2018, 122, 12369-12376.	3.1	26
111	N-TiO2/Cu-TiO2 double-layer films: Impact of stacking order on photocatalytic properties. Journal of Catalysis, 2017, 353, 116-122.	6.2	25
112	Influence of fluorine on the synthesis of anatase TiO ₂ for photocatalytic partial oxidation: are exposed facets the main actors?. Catalysis Science and Technology, 2018, 8, 1606-1620.	4.1	25
113	Alkaloids of Ocotea acutangula. Journal of the Chemical Society Perkin Transactions 1, 1981, , 578.	0.9	24
114	First Enantioselective Synthesis of (-)-Akagerine by a Chemoenzymic Approach. Journal of Organic Chemistry, 1995, 60, 2506-2513.	3.2	24
115	Pyrrolizidine alkaloids. A concise entry to (â^')-pyrrolam A. Tetrahedron: Asymmetry, 1997, 8, 515-518.	1.8	24
116	Stepwise assembly of platinum–folic acid conjugates. Inorganica Chimica Acta, 2008, 361, 1447-1455.	2.4	24
117	Dye-sensitized photo-oxygenation of the Aspidosperma alkaloids vincadifformine and tabersonine. A new, convenient approach to vincamine. Journal of the Chemical Society Perkin Transactions $1,1982,$, $1371.$	0.9	23
118	A highly enantioselective synthesis of (â^')-antirhine by chemo-enzymatic approach. Tetrahedron, 1994, 50, 8837-8852.	1.9	23
119	Synthesis of fercoprolone, a degraded prenylated coumarin. Tetrahedron, 1998, 54, 10819-10826.	1.9	23
120	Facile Preparation of Polytopic Azoles: Synthesis, Characterization, and X-ray Powder Diffraction Studies of 1,4-Bis(pyrazol-4-yl)- and 1,4-Bis(tetrazol-5-yl)benzene. Chemistry Letters, 2008, 37, 956-957.	1.3	23
121	Ultrasound-enhanced one-pot synthesis of 3-(Het)arylmethyl-4-hydroxycoumarins in water. Ultrasonics Sonochemistry, 2011, 18, 652-660.	8.2	23
122	Imine-enamine annelation: stereoselective syntheses of (\hat{A}_{\pm}) -deplancheine. Tetrahedron Letters, 1982, 23, 2139-2142.	1.4	22
123	Five- and six-membered indole-fused platinacycles. Journal of Organometallic Chemistry, 1995, 496, C1-C3.	1.8	22
124	Cyclopalladated complexes of Schiff bases of homoveratrylamine and tryptamine. Synthesis and CO insertion. Inorganica Chimica Acta, 1998, 272, 18-23.	2.4	22
125	Unusual photochemical behaviour of the enone chromophore of the insect moulting hormone 20α-hydroxyecdysone. Journal of the Chemical Society Chemical Communications, 1985, , 1321-1322.	2.0	21
126	Indole alkaloids. A combined chemical and enzymatic route for eburnane ring construction: Formal synthesis of (â")-Eburnamonine. Tetrahedron, 1994, 50, 9487-9494.	1.9	21

#	Article	IF	CITATIONS
127	ORMOSIL Thin Films:Â Tuning Mechanical Properties via a Nanochemistry Approach. Langmuir, 2006, 22, 11158-11162.	3.5	21
128	Nanoflowerâ€Like Bi ₂ WO ₆ Encapsulated in ORMOSIL as a Novel Photocatalytic Antifouling and Foulâ€Release Coating. Chemistry - A European Journal, 2016, 22, 7063-7067.	3.3	21
129	1,2-Addition of dilithium trialkynylcuprates to $\hat{l}\pm\hat{l}^2$ -unsaturated cyclic ketones. Journal of the Chemical Society Chemical Communications, 1975, , 892-893.	2.0	20
130	Oxidation of .betaanilinoacrylate alkaloids vincadifformine and tabersonine by Fremy's salt. A mechanistic insight into the rearrangement of Aspidosperma to Hunteria eburnea alkaloids. Journal of Organic Chemistry, 1988, 53, 1056-1064.	3.2	20
131	Hexacyclic indole alkaloids. A highly convergent total synthesis of cuanzine. Journal of Organic Chemistry, 1991, 56, 2380-2386.	3.2	20
132	Ammodoremin, an Epimeric Mixture of Prenylated Chromandiones from Ammoniacum. Helvetica Chimica Acta, 1991, 74, 495-500.	1.6	20
133	Synthesis of 2-hetaryl substituted indoles via palladium-catalysed reductive N-heterocyclisation. Journal of Molecular Catalysis A, 1998, 135, 241-248.	4.8	20
134	Synthesis of the Gd(III) complex with a tetrazole-armed macrocyclic ligand as a potential MRI contrast agent. Tetrahedron Letters, 2002, 43, 783-786.	1.4	20
135	Determination of Photoadsorption Capacity of Polychrystalline TiO2 Catalyst in Irradiated Slurry. Advances in Chemical Engineering, 2009, 36, 1-35.	0.9	20
136	Synthesis of Nitrogen-Containing Heterocycles via Ring-Closing Ene-Ene and Ene-Yne Metathesis Reactions: An Easy Access to 1- and 2-Benzazepine Scaffolds and Five- and Six-Membered Lactams. Synthesis, 2012, 44, 3523-3533.	2.3	20
137	Photoelectrochemical activity of electrospun WO3/NiWO4 nanofibers under visible light irradiation. Journal of Materials Science, 2018, 53, 2208-2220.	3.7	20
138	1-Hydroxyrutaecarpine from Euxylophora paraënsis. Phytochemistry, 1974, 13, 1603-1606.	2.9	19
139	Indole alkaloids. Enantioselective synthesis of (–)-alloyohimbane by a chemoenzymatic approach. Journal of the Chemical Society Chemical Communications, 1987, , 299-300.	2.0	19
140	Three-Component Tandem Knoevenagel/Hetero Dielsâ-'Alder Reactions â-' Total Synthesis of (\hat{A}_{\pm}) -Preethulia Coumarin. European Journal of Organic Chemistry, 2001, 2001, 3711.	2.4	19
141	Diruthenium(II,II) tetrakis(acetate) as a catalyst of choice for intermolecular insertion of stabilized diazocompounds into Oî—,H bonds. Tetrahedron Letters, 2002, 43, 3637-3640.	1.4	19
142	Validation of a two-dimensional modeling of an externally irradiated slurry photoreactor. Chemical Engineering Journal, 2015, 262, 490-498.	12.7	19
143	Mannich Reaction as a New Route to Pyridine-Based Polyaminocarboxylic Ligands. Organic Letters, 2004, 6, 1201-1204.	4.6	18
144	Accelerated Koenigsâ^'Knorr Glucuronidation of a Deactivated Nitrophenol:Â Unveiling the Role of Polyamine Additive 1,1,4,7,10,10-Hexamethyltriethylenetetramine1through Design of Experiments. Journal of Organic Chemistry, 2004, 69, 1097-1103.	3.2	18

#	Article	IF	Citations
145	Long-Chain 3-Acyl-4-hydroxycoumarins: Structure and Antibacterial Activity. Archiv Der Pharmazie, 2006, 339, 129-132.	4.1	18
146	Excited-State Dynamics of Bis-dehydroxycurcumin Carboxylic Acid, a Water-Soluble Derivative of the Photosensitizer Curcumin. Journal of Physical Chemistry A, 2012, 116, 9321-9330.	2.5	18
147	Catalysis in glycerol: a survey of recent advances. Chemical Papers, 2015, 69, .	2.2	18
148	A novel synthesis of $\langle i \rangle N \langle i \rangle$ -hydroxy-3-aroylindoles and 3-aroylindoles. Organic and Biomolecular Chemistry, 2018, 16, 6853-6859.	2.8	18
149	Minor indolopyridoquinazoline alkaloids from Euxylophora paraënsis. Phytochemistry, 1973, 12, 2521-2525.	2.9	17
150	An efficient chemo-enzymatic approach to (+)-meroquinene. Tetrahedron: Asymmetry, 1990, 1, 793-800.	1.8	17
151	A library of pyranocoumarin derivatives <i>via</i> a oneâ€pot threeâ€component hetero dielsâ€alder reaction. Journal of Heterocyclic Chemistry, 2001, 38, 965-971.	2.6	17
152	Allylindation of 1H-indole-3-carboxaldehyde in the presence of azolesâ€"revisited. Tetrahedron Letters, 2006, 47, 6439-6443.	1.4	17
153	Longâ€Lasting Nonâ€hydrogenated Dark Titanium Dioxide: Medium Vacuum Anneal for Enhanced Visible Activity of Modified Multiphase Photocatalysts. ChemCatChem, 2018, 10, 2949-2954.	3.7	17
154	Unveiling the role of bisulfide in the photocatalytic splitting of H2S in aqueous solutions. Applied Catalysis B: Environmental, 2020, 270, 118886.	20.2	17
155	Dehydrative alkylation of alcohols with triethyl methanetricarboxylate under Mitsunobu conditions. Tetrahedron, 1996, 52, 13007-13016.	1.9	16
156	An Improved Procedure for the Synthesis of Oleuropeic Acid. I. Synthetic Communications, 1985, 15, 165-170.	2.1	15
157	Oxidative Addition of 4-Hydroxycoumarin to Alkenes. An Expeditious Entry to 2,3-Dihydro-4 <i>H</i> furo-[3,2- <i>c</i>][1]benzopyran-4-ones ¹ . Synthetic Communications, 1996, 26, 3359-3371.	2.1	15
158	Diethoxyphosphoryl as a Protecting-Activating Group in the Synthesis of Polyazacyclophanes. Helvetica Chimica Acta, 2000, 83, 793-800.	1.6	15
159	Umbelliferone aminoalkyl derivatives, a new class of squalene-hopene cyclase inhibitors. European Journal of Medicinal Chemistry, 2004, 39, 917-924.	5 . 5	15
160	Novel functionalized pyridine-containing DTPA-like ligand. Synthesis, computational studies and characterization of the corresponding GdIII complex. Organic and Biomolecular Chemistry, 2007, 5, 2441.	2.8	15
161	Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts. Photochemical and Photobiological Sciences, 2015, 14, 1685-1693.	2.9	15
162	Integrated Nano- and Macroscale Investigation of Photoinduced Hydrophilicity in TiO ₂ Thin Films. Langmuir, 2016, 32, 11813-11818.	3.5	15

#	Article	lF	Citations
163	Antifouling and Photocatalytic Antibacterial Activity of the AquaSun Coating in Seawater and Related Media. ACS Omega, 2017, 2, 7568-7575.	3.5	15
164	Sputtered vs. sol-gel TiO2-doped films: Characterization and assessment of aqueous bisphenol A oxidation under UV and visible light radiation. Catalysis Today, 2020, 357, 380-391.	4.4	15
165	Ca++-modulators. Unusual highly stereospecific hantzsch-like cyclization: first authenticated example of 2-chloromethylene-1,2,3,4-tetrahydropyridine. Tetrahedron Letters, 1988, 29, 6335-6338.	1.4	14
166	Synthetic studies on indole alxaloids. A stereocontrolled entry to the cuanzine structural unit. Tetrahedron, 1989, 45, 3583-3596.	1.9	14
167	Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase., 2000, 52, 648-652.		14
168	One-step synthesis of a new eight-membered cyclic ligand from glycine, formaldehyde and hypophosphorous acid. Tetrahedron Letters, 2002, 43, 8387-8389.	1.4	14
169	Efficient synthesis of 1-ethyl-2,3,4,6,7,12-hexahydroindolo[2,3-a]quinolizine: a key precursor to eburnane alkaloids. Journal of the Chemical Society Chemical Communications, 1980, , 109.	2.0	13
170	A Regioselective Synthesis of 3-Isoprenyl-4-Hydroxycoumarins. Synthetic Communications, 1992, 22, 2205-2212.	2.1	13
171	A SONOCHEMICAL PROTOCOL FOR THE SYNTHESIS OF PERMODIFIED CYCLODEXTRINS. Journal of Carbohydrate Chemistry, 2001, 20, 495-501.	1.1	13
172	Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid, C6H2N2O4S2, and its coordination polymers. Solid State Sciences, 2010, 12, 795-802.	3.2	13
173	One-pot sonochemical synthesis of ferrocenyl derivatives via a three-component reaction in aqueous media. Ultrasonics Sonochemistry, 2015, 27, 30-36.	8.2	13
174	Convenient and expeditious synthesis of some indoloquinolizine alkaloids. Journal of the Chemical Society Chemical Communications, 1980, , 860.	2.0	12
175	\hat{l}_{\pm} -Hydroxy ketone rearrangement as a key step en route to the calebassinine skeleton. Journal of the Chemical Society Chemical Communications, 1986, , 1564-1565.	2.0	12
176	Hexacyclic indole alkaloids. The structure of cuanzine as an experimental test of molecular mechanics calculations. Journal of Organic Chemistry, 1990, 55, 2182-2185.	3.2	12
177	Gadolinium(III) Complexes of dota-DerivedN-Sulfonylacetamides (H4(dota-NHSO2R)=10-{2-[(R)sulfonylamino]-2-oxoethyl}-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic) Tj ETÇ Chimica Acta. 2005. 88. 588-603.	2q1,1 0.78	4314 rgBT /
178	Möhlau's Anthradipyrazole Revisited: A New Look at an Old Molecular System. Crystal Growth and Design, 2013, 13, 4948-4956.	3.0	12
179	Crystal Chemistry of the Antibiotic Doripenem. Journal of Pharmaceutical Sciences, 2014, 103, 3641-3647.	3.3	12
180	The Structure Elucidation of Pseudothiocolchicine. Helvetica Chimica Acta, 1985, 68, 2173-2176.	1.6	11

#	Article	IF	CITATIONS
181	Bis(indole) alkaloids. A nonbiomimetic approach to the blue pigment trichotomine dimethyl ester. Journal of Organic Chemistry, 1985, 50, 3322-3325.	3.2	11
182	Selectivity in the thiocyanation of 3-alkylindoles: an unexpectedly easy access to 2-isothiocyano derivatives. Tetrahedron Letters, 1990, 31, 7229-7232.	1.4	11
183	Functionalization at C-17 of an Eburnea-Aspidosperma Binary Alkaloid as a Model to Study Modified Vinblastine-type Antitumor Alkaloids. Journal of Organic Chemistry, 1994, 59, 5810-5813.	3.2	11
184	Camphor-based oxazaphospholanes as chiral templates for the enantioselective synthesis of α-chlorophosphonic acids. Tetrahedron: Asymmetry, 1999, 10, 4277-4280.	1.8	11
185	NanoMORALs — Metal nanoparticles doped with organic molecules. Canadian Journal of Chemistry, 2009, 87, 673-677.	1.1	11
186	Combined photocatalytic properties and energy efficiency via multifunctional glass. Journal of Environmental Chemical Engineering, 2019, 7, 102980.	6.7	11
187	N-Doped Anatase/Rutile Photocatalysts for the Synthesis of Aromatic Aldehydes Under Ultraviolet and Solar Irradiation. Science of Advanced Materials, 2015, 7, 2306-2319.	0.7	11
188	Monoterpenoid chemistry. Part 3 Stereoselective synthesis of the major oxygenated metabolites oftrans-sobrerol. Helvetica Chimica Acta, 1987, 70, 71-78.	1.6	10
189	Electrochemical heterocyclization of o-toluenesulfonamides to 3-alkyl-4,5-dihydro-1,2,4-benzothiazepine-1,1-dioxides. Tetrahedron, 1988, 44, 1545-1552.	1.9	10
190	The Chemistry of Coumarin Derivatives. Part 5. Unusual course of the reaction of 4-hydroxycoumarin and aliphatic aldehydes. Helvetica Chimica Acta, 1993, 76, 1194-1202.	1.6	10
191	A Practical Synthesis of 1,4,7,10-Tetraaza-Cyclododecane, A Pivotal Precursor for MRI Contrast Agents. Synthetic Communications, 2000, 30, 15-21.	2.1	10
192	Synthesis of Selectively Permodified γ–Cyclodextrins. A New Set of Chiral Stationary Phases in Capillary GC. Journal of Carbohydrate Chemistry, 2000, 19, 1235-1245.	1.1	10
193	Polycyclic compounds from aminopolyols and $\hat{l}\pm$ -dicarbonyls: structure and application in the synthesis of exoditopic ligands. Organic and Biomolecular Chemistry, 2005, 3, 1489-1494.	2.8	10
194	A quantitative method of photoadsorption determination for irradiated catalyst in liquid–solid system. Catalysis Today, 2009, 143, 189-194.	4.4	10
195	Difluprednate: More than meets the eye. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 305-313.	2.8	10
196	Water microbial disinfection via supported nAg/Kaolin in a fixed-bed reactor configuration. Applied Clay Science, 2020, 184, 105387.	5.2	10
197	Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis. Molecules, 2021, 26, 23.	3.8	10
198	4-Hydroxycoumarin and Related Systems: Sitoselectivity of the Mitsunobu Reaction with Prenyl Alcohols. Heterocycles, 2003, 60, 1351.	0.7	10

#	Article	IF	CITATIONS
199	Electrochemical Synthesis of 2-Haloergolines. Synthesis, 1987, 1987, 137-139.	2.3	9
200	Indole alkaloids. Enantiocontrolled synthesis and absolute configuration of (+)-decarbomethoxy-15,20;16,17-tetrahydrosecodine. Tetrahedron: Asymmetry, 1995, 6, 1229-1232.	1.8	9
201	Palladium-catalysed coupling between allyl carbonates and triethyl methanetricarboxylate (TEMT). Tetrahedron, 1998, 54, 1639-1646.	1.9	9
202	Structures from powders: Diflorasone diacetate. Steroids, 2009, 74, 102-111.	1.8	9
203	On form dictating function: shape and structural effects in silicaâ€based funtional materials. Chemical Record, 2010, 10, 17-28.	5.8	9
204	Unexpectedly ambivalent O2 role in the autocatalytic photooxidation of 2-methoxybenzyl alcohol in water. Journal of Molecular Catalysis A, 2015, 403, 37-42.	4.8	9
205	Fluorescence studies on 2-(het)aryl perimidine derivatives. Journal of Luminescence, 2016, 179, 384-392.	3.1	9
206	A new approach to $(\hat{A}\pm)$ -apovincamine. Tetrahedron Letters, 1981, 22, 1827-1828.	1.4	8
207	A new indolopyridoquinazoline in the bark of Euxylophora paraënsis. Phytochemistry, 1976, 15, 1095-1096.	2.9	7
208	On the alleged electrochemical methoxylation of ergolines. Tetrahedron Letters, 1983, 24, 819-820.	1.4	7
209	Vobtusamine, the first spiro Aspidosperma-Eburnea alkaloid. Journal of Organic Chemistry, 1983, 48, 381-383.	3.2	7
210	Aspidosperma Alkaloids. A New Didehydrodimerization Mode of ?-Anilinoacrylic Alkaloids by Anodic Oxidation. Helvetica Chimica Acta, 1992, 75, 813-824.	1.6	7
211	Structural insight on organosilica electrodes for waste-free alcohol oxidations. Catalysis Letters, 2007, 114, 55-58.	2.6	7
212	Two-Dimensional Modeling of an Externally Irradiated Slurry Photoreactor. International Journal of Chemical Reactor Engineering, 2013, 11, 675-685.	1.1	7
213	Photocatalytic activity of an electrophoretically deposited composite titanium dioxide membrane using carbon cloth as a conducting substrate. RSC Advances, 2016, 6, 64219-64227.	3.6	7
214	Influence of the Preparation Temperature on the Photocatalytic Activity of 3D-Ordered Macroporous Anatase Formed with an Opal Polymer Template. ACS Applied Nano Materials, 2018, 1, 2567-2578.	5.0	7
215	3z-Hydroxyvobtusine, a Key-link between Vobtusine and Amataine. Heterocycles, 1980, 14, 201.	0.7	7
216	The configuration of (+)-evodiamine: a long-standing problem in the chemistry of indole alkaloids. Journal of the Chemical Society Chemical Communications, 1982, , 1092.	2.0	6

#	Article	IF	CITATIONS
217	A Mild and Chemoselective Reduction of Cyclic Iminium Salts. Synthesis, 1985, 1985, 1072-1074.	2.3	6
218	Synthesis of new polyoxapolycarboxylic ligands for lanthanide(III) ions complexation. Tetrahedron Letters, 2004, 45, 5901-5903.	1.4	6
219	Synthesis and solid-state structure of thermally stable linear bi-pyrazoles. Solid State Sciences, 2013, 22, 43-49.	3.2	6
220	Selective photooxidation of ortho-substituted benzyl alcohols and the catalytic role of ortho-methoxybenzaldehyde. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328, 122-128.	3.9	6
221	The microbiological oxidation of insect moulting hormones. Journal of the Chemical Society Chemical Communications, 1974, , 656.	2.0	5
222	Rhodium(II) catalysed decomposition of 3-diazo-4-hydroxycoumarin. Journal of Molecular Catalysis A, 2000, 164, 165-171.	4.8	5
223	CAMPHOR-BASED CHIRAL AUXILIARY: FORMAL SYNTHESIS OF ENANTIOMERICALLY ENRICHED Î ² -AMINOPHOSPHONIC ACIDS VIA PTC ALKYLATION. Synthetic Communications, 2001, 31, 1013-1020.	2.1	5
224	A degradation product of halobetasol propionateâ€"Characterization and structure. Steroids, 2007, 72, 787-791.	1.8	5
225	Cyclization reactions of coumarin derivatives: Chemo―and regioselectivity effects of oxygen/sulfur isosteric replacement. Journal of Heterocyclic Chemistry, 2007, 44, 411-418.	2.6	5
226	Design of a Microfluidic Photocatalytic Reactor for Removal of Volatile Organic Components: Process Simulation and Techno-Economic Assessment. ACS Omega, 2022, 7, 8306-8313.	3.5	5
227	SYNTHESIS OF 2-ALKOXY-5-NITROBENZAMIDES BY PHASE-TRANSFER CATALYZED NUCLEOPHILIC SUBSTITUTION OF 2-CHLORO-5-NITROBENZAMIDES. Organic Preparations and Procedures International, 1985, 17, 75-80.	1.3	4
228	Reaction of 4-hydroxycoumarin derivatives with activated dimethyl sulphoxide. Journal of the Chemical Society Perkin Transactions $1,1989,,2305.$	0.9	4
229	In-cell indirect electrochemical halogenation of pyrimidine bases and their nucleosides to 5-haloderivatives. Tetrahedron Letters, 1992, 33, 7779-7782.	1.4	4
230	Phase Diagram of (R)- and (S)-4-Hydroxy-2-pyrrolidone Mixtures: A New Case of a Conglomerate-Forming System. Journal of Pharmaceutical Sciences, 1993, 82, 758-760.	3.3	4
231	NMR and computational study on the anomeric effect incis/trans-3,4-dihydro-2-alkoxy-4-substituted-2H,5H-pyrano[3,2-c][1]benzopyran-5-one derivatives. Magnetic Resonance in Chemistry, 1997, 35, 721-729.	1.9	4
232	A Structurally Diverse Heterocyclic Library by Decoration of Oxcarbazepine Scaffold. Molecules, 2013, 18, 13705-13722.	3.8	4
233	Reviewing the Manifold Aspects of Ganciclovir Crystal Forms. Crystal Growth and Design, 2016, 16, 4108-4118.	3.0	4
234	Towards the Broad Utilization of Gold Nanoparticles Entrapped in Organosilica. ChemCatChem, 2017, 9, 1322-1328.	3.7	4

#	Article	IF	CITATIONS
235	Excited state dynamics of bis-dehydroxycurcumin tert-butyl ester, a diketo-shifted derivative of the photosensitizer curcumin. PLoS ONE, 2017, 12, e0175225.	2.5	4
236	Technoâ€Economic Evaluation of Photocatalytic H ₂ S Splitting. Energy Technology, 2021, 9, 2100163.	3.8	4
237	A novel porphyrazine ligand tailored to homogeneous metal catalyzed transformations. Arkivoc, 2015, 2014, 72-85.	0.5	4
238	Electron impact mass spectrometry of 4, 5-dihydro-1,2,4-benzothiadiazepine-1,1-dioxide derivatives. Organic Mass Spectrometry, 1984, 19, 280-284.	1.3	3
239	Heteroyohimbine alkaloids. Stereospecific conversion of ajmalicine into 19-epiajmalicine. Journal of the Chemical Society Perkin Transactions 1, 1985, , 923.	0.9	3
240	An efficient entry to highly functionalised C4chiral synthons via Lewis acid-catalysed ene reaction of (1S)- \hat{l}^2 -pinene and \hat{l}_\pm -keto esters. Part 4 Journal of the Chemical Society Perkin Transactions 1, 1990, , 1875-1880.	0.9	3
241	Insight into the offbeat electrochemical methoxylation of isatin. Tetrahedron Letters, 2000, 41, 8825-8827.	1.4	3
242	NorDATA: An original ligand based on the norbornane skeleton. Synthesis and thermodynamic characterization of metal complexes. Polyhedron, 2008, 27, 3683-3687.	2.2	3
243	(1H-Benzo[d][1,2,3]triazol-1-yl)(5-bromo-1-hydroxy-1H-indol-3-yl)methanone. MolBank, 2014, 2014, M829.	0.5	3
244	A Direct, Regioselective and Atom-Economical Synthesis of 3-Aroyl- N -hydroxy-5-nitroindoles by Cycloaddition of 4-Nitronitrosobenzene with Alkynones. Journal of Visualized Experiments, 2020, , .	0.3	3
245	Technoâ€Economic Evaluation of Photocatalytic H ₂ S Splitting. Energy Technology, 2021, 9, 2170082.	3.8	3
246	Acrylamide Elimination by Lactic Acid Bacteria: Screening, Optimization, In Vitro Digestion, and Mechanism. Microorganisms, 2022, 10, 557.	3.6	3
247	Enhanced Mechanical Properties in Organofluorosilica Thin Films. Journal of Nanomaterials, 2008, 2008, 1-5.	2.7	2
248	Cu(II) bifunctional (N,O,O′) coordination polymer: A case study for complex ab-initio crystal structure determination from PXRD data. Solid State Sciences, 2017, 71, 22-28.	3.2	2
249	CHAPTER 11. New Synthetic Routes in Heterogeneous Photocatalysis. RSC Energy and Environment Series, 2016, , 303-344.	0.5	2
250	Covalent Nucleoside Adducts of Aspidosperma Alkaloids. Nucleosides & Nucleotides, 1991, 10, 1667-1675.	0.5	1
251	4-Hydroxycoumarin and Related Systems: Sitoselectivity of the Mitsunobu Reaction with Prenyl Alcohols ChemInform, 2003, 34, no.	0.0	1
252	The Rhodium Carbenoid Route to 3-Aryl-4-hydroxycoumarins: Synthesis of Derrusnin. Synlett, 2005, 2005, 0927-0930.	1.8	1

#	Article	IF	CITATIONS
253	Efficient Regioselective Opening of Epoxides by Nucleophiles in Water under Simultaneous Ultrasound/Microwave Irradiation. Synlett, 2007, 2007, 2041-2044.	1.8	1
254	Editorial: Selective Photocatalysis for Organic Chemistry. Current Organic Chemistry, 2013, 17, 2365-2365.	1.6	1
255	Photocatalytic Degradation of 2-propanol Over TiO2-based Thin Films in a Simulated Pilot Microreactor. Journal of Photocatalysis, 2021, 2, 97-104.	0.4	1
256	Contrast Agents for Magnetic Resonance Imaging: A Novel Route to Enhanced Relaxivities Based on the Interaction of a GdIII Chelate with Poly–cyclodextrins. Chemistry - A European Journal, 1999, 5, 1253-1260.	3.3	1
257	The Aldol Reaction under High-Intensity Ultrasound: A Novel Approach to an Old Reaction ChemInform, 2004, 35, no.	0.0	0
258	Statistical Experimental Design-Driven Discovery of Room-Temperature Conditions for Palladium-Catalyzed Cyanation of Aryl Bromides ChemInform, 2005, 36, no.	0.0	0
259	High-Intensity Ultrasound and Microwave, Alone or Combined, Promote Pd/C-Catalyzed Aryl—Aryl Couplings ChemInform, 2005, 36, no.	0.0	0
260	A Preliminary Investigation of Total Organic Carbon Variation in Influent and Effluent of Isfahan (Iran) Water Treatment Plant, Urban Network and Fellman Wells. Annali Di Chimica, 2006, 96, 389-398.	0.6	0
261	Erratum to Two-Dimensional Modeling of an Externally Irradiated Slurry Photoreactor. International Journal of Chemical Reactor Engineering, 2014, 12, 665-665.	1.1	0
262	Heterogeneous Photochemistry: Solar Energy Conversion and Environmental Remediation. International Journal of Photoenergy, 2016, 2016, 1-1.	2.5	0
263	The Thermal Dimerization of Pyrano[3,2-c]coumarins. Heterocycles, 1997, 45, 949.	0.7	0
264	Design of Metal–Dielectric Multilayer Coatings for Energyâ€Efficient Building Glazing. Energy Technology, 0, , 2100776.	3.8	0