Yu-Sheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/139726/publications.pdf

Version: 2024-02-01

26 papers 8,921 citations

394421 19 h-index 27 g-index

29 all docs

29 docs citations

times ranked

29

8266 citing authors

#	Article	IF	CITATIONS
1	Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 2014, 24, 177-189.	12.0	1,719
2	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Molecular Cell, 2016, 61, 507-519.	9.7	1,432
3	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	12.0	1,045
4	FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 2014, 24, 1403-1419.	12.0	869
5	5-methylcytosine promotes mRNA export â€" NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 2017, 27, 606-625.	12.0	666
6	Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Research, 2019, 29, 725-738.	12.0	661
7	Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Research, 2017, 27, 444-447.	12.0	606
8	5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nature Cell Biology, 2019, 21, 978-990.	10.3	410
9	Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Research, 2017, 27, 1100-1114.	12.0	306
10	A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Research, 2019, 29, 23-41.	12.0	250
11	RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Molecular Cell, 2019, 75, 1188-1202.e11.	9.7	242
12	Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Research, 2019, 29, 927-941.	12.0	154
13	Smg6/Est1 licenses embryonic stem cell differentiation via nonsenseâ€mediated <scp>mRNA</scp> decay. EMBO Journal, 2015, 34, 1630-1647.	7.8	108
14	m6A promotes R-loop formation to facilitate transcription termination. Cell Research, 2019, 29, 1035-1038.	12.0	101
15	Dynamic transcriptomic <scp>m⁵C</scp> and its regulatory role in <scp>RNA</scp> processing. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1639.	6.4	101
16	Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Research, 2018, 28, 249-252.	12.0	84
17	An alternative CTCF isoform antagonizes canonical CTCF occupancy and changes chromatin architecture to promote apoptosis. Nature Communications, 2019, 10, 1535.	12.8	39
18	Reorganized 3D Genome Structures Support Transcriptional Regulation in Mouse Spermatogenesis. IScience, 2020, 23, 101034.	4.1	36

#	Article	IF	CITATIONS
19	Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound proteome and IDH1-bound transcriptome. Nucleic Acids Research, 2019, 47, 2244-2262.	14.5	29
20	5-Methylcytosine Analysis by RNA-BisSeq. Methods in Molecular Biology, 2019, 1870, 237-248.	0.9	10
21	Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein and Cell, 2022, 13, 920-939.	11.0	9
22	RNA 5-methylcytosine regulates YBX2-dependent liquid-liquid phase separation. Fundamental Research, 2022, 2, 48-55.	3.3	8
23	N6-methyladenosine regulates RNA abundance of SARS-CoV-2. Cell Discovery, 2021, 7, 7.	6.7	7
24	Aberrant APOBEC3C expression induces characteristic genomic instability in pancreatic ductal adenocarcinoma. Oncogenesis, 2022, 11, .	4.9	7
25	Comprehensive analysis of RNA-seq and whole genome sequencing data reveals no evidence for SARS-CoV-2 integrating into host genome. Protein and Cell, 2022, 13, 379-385.	11.0	3
26	Dynamic DNA 5-Hydroxylmethylcytosine and RNA 5-Methycytosine Reprogramming During Early Human Development. Genomics, Proteomics and Bioinformatics, 2023, 21, 805-822.	6.9	1