List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/13968/publications.pdf Version: 2024-02-01

		23567	27406
137	12,178	58	106
papers	citations	h-index	g-index
143	143	143	15551
all docs	docs citations	times ranked	citing authors

DEAN TANC

#	Article	IF	CITATIONS
1	Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Seminars in Cancer Biology, 2022, 78, 90-103.	9.6	53
2	LRIG1, a regulator of stem cell quiescence and a pleiotropic feedback tumor suppressor. Seminars in Cancer Biology, 2022, 82, 120-133.	9.6	14
3	Cancer cell heterogeneity and plasticity: From molecular understanding to therapeutic targeting. Seminars in Cancer Biology, 2022, 82, 1-2.	9.6	5
4	Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in Cancer Biology, 2022, 82, 68-93.	9.6	31
5	A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. Journal of Clinical Investigation, 2022, 132, .	8.2	21
6	MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Frontiers in Cell and Developmental Biology, 2021, 9, 640587.	3.7	67
7	A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
8	Inhibition of CDK9 activity compromises global splicing in prostate cancer cells. RNA Biology, 2021, 18, 722-729.	3.1	13
9	Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Letters, 2021, 518, 1-9.	7.2	49
10	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	3.8	8
11	Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2020, 11, 2089.	12.8	83
12	Evidence for context-dependent functions of KDM5B in prostate development and prostate cancer. Oncotarget, 2020, 11, 4243-4252.	1.8	10
13	Systematic evaluation of RNA-Seq preparation protocol performance. BMC Genomics, 2019, 20, 571.	2.8	38
14	ATG5 cancer mutations and alternative mRNA splicing reveal a conjugation switch that regulates ATG12–ATG5-ATG16L1 complex assembly and autophagy. Cell Discovery, 2019, 5, 42.	6.7	44
15	LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nature Communications, 2019, 10, 5494.	12.8	13
16	Tumor Dormancy and Slow-Cycling Cancer Cells. Advances in Experimental Medicine and Biology, 2019, 1164, 199-206.	1.6	41
17	Usp22 controls multiple signaling pathways that are essential for vasculature formation in the mouse placenta. Development (Cambridge), 2019, 146, .	2.5	30
18	Histone 2B-GFP Label-Retaining Prostate Luminal Cells Possess Progenitor Cell Properties and Are Intrinsically Resistant to Castration. Stem Cell Reports, 2018, 10, 228-242.	4.8	36

#	Article	IF	CITATIONS
19	Prostate Luminal Progenitor Cells in Development and Cancer. Trends in Cancer, 2018, 4, 769-783.	7.4	54
20	Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nature Communications, 2018, 9, 3600.	12.8	96
21	"Splice―a way towards neuroendocrine prostate cancer. EBioMedicine, 2018, 35, 12-13.	6.1	4
22	<scp>FAM</scp> 35A associates with <scp>REV</scp> 7 and modulates <scp>DNA</scp> Âdamage responses of normal and <scp>BRCA</scp> 1â€defective cells. EMBO Journal, 2018, 37, .	7.8	73
23	Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells, 2018, 36, 1457-1474.	3.2	90
24	Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death and Differentiation, 2018, 25, 1921-1937.	11.2	106
25	Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Seminars in Cancer Biology, 2018, 52, 94-106.	9.6	100
26	Cyclophilin B induces chemoresistance by degrading wildâ€ŧype p53 via interaction with MDM2 in colorectal cancer. Journal of Pathology, 2018, 246, 115-126.	4.5	21
27	MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nature Communications, 2017, 8, 14270.	12.8	187
28	Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nature Protocols, 2017, 12, 439-451.	12.0	253
29	Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Seminars in Cancer Biology, 2017, 44, 83-97.	9.6	54
30	Numbâ^'/low Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling. Clinical Cancer Research, 2017, 23, 6744-6756.	7.0	36
31	Developing a Novel Two-Dimensional Culture System to Enrich Human Prostate Luminal Progenitors that Can Function as a Cell of Origin for Prostate Cancer. Stem Cells Translational Medicine, 2017, 6, 748-760.	3.3	19
32	Molecular determinants of prostate cancer metastasis. Oncotarget, 2017, 8, 88211-88231.	1.8	19
33	Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model. Oncotarget, 2017, 8, 52746-52760.	1.8	4
34	miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget, 2016, 7, 56628-56642.	1.8	48
35	Generation of a C57BL/6 <i>MYC</i> -Driven Mouse Model and Cell Line of Prostate Cancer. Prostate, 2016, 76, 1192-1202.	2.3	27
36	Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells. Genomics Data, 2016, 7, 318-320.	1.3	0

#	Article	IF	CITATIONS
37	Defining a Population of Stem-like Human Prostate Cancer Cells That Can Generate and Propagate Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 4505-4516.	7.0	78
38	ATXN7L3 and ENY2 Coordinate Activity of Multiple H2B Deubiquitinases Important for Cellular Proliferation and Tumor Growth. Molecular Cell, 2016, 62, 558-571.	9.7	106
39	NANOG reprograms prostate cancer cells to castration resistance via dynamically repressing and engaging the AR/FOXA1 signaling axis. Cell Discovery, 2016, 2, 16041.	6.7	41
40	Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nature Communications, 2016, 7, 10798.	12.8	166
41	Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSAâ`'/lo castration-resistant cells. Oncotarget, 2016, 7, 14220-14240.	1.8	17
42	Cancers of the breast and prostate: a stem cell perspective. Endocrine-Related Cancer, 2015, 22, E9-E11.	3.1	3
43	Regulation of NANOG in cancer cells. Molecular Carcinogenesis, 2015, 54, 679-687.	2.7	79
44	Maintenance Therapy Containing Metformin and/or Zyflamend for Advanced Prostate Cancer: A Case Series. Case Reports in Oncological Medicine, 2015, 2015, 1-5.	0.3	10
45	Cancer stem cells and cell size: A causal link?. Seminars in Cancer Biology, 2015, 35, 191-199.	9.6	69
46	Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 2015, 33, 2381-2390.	3.2	177
47	Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer Research, 2015, 75, 4003-4011.	0.9	198
48	Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocrine-Related Cancer, 2015, 22, T209-T220.	3.1	48
49	Cytotoxicity of Human Endogenous Retrovirus K–Specific T Cells toward Autologous Ovarian Cancer Cells. Clinical Cancer Research, 2015, 21, 471-483.	7.0	70
50	Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget, 2015, 6, 23959-23986.	1.8	65
51	Nanog1 in NTERA-2 and Recombinant NanogP8 from Somatic Cancer Cells Adopt Multiple Protein Conformations and Migrate at Multiple M.W Species. PLoS ONE, 2014, 9, e90615.	2.5	11
52	Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle, 2014, 13, 1798-1810.	2.6	22
53	miRNA-128 Suppresses Prostate Cancer by Inhibiting BMI-1 to Inhibit Tumor-Initiating Cells. Cancer Research, 2014, 74, 4183-4195.	0.9	128
54	Cancer stem cells and radioresistance. International Journal of Radiation Biology, 2014, 90, 615-621.	1.8	214

#	Article	IF	CITATIONS
55	The microRNA miR-34a Inhibits Non-Small Cell Lung Cancer (NSCLC) Growth and the CD44hi Stem-Like NSCLC Cells. PLoS ONE, 2014, 9, e90022.	2.5	102
56	Bim, a Proapoptotic Protein, Up-regulated via Transcription Factor E2F1-dependent Mechanism, Functions as a Prosurvival Molecule in Cancer. Journal of Biological Chemistry, 2013, 288, 368-381.	3.4	68
57	New insights into prostate cancer stem cells. Cell Cycle, 2013, 12, 579-586.	2.6	65
58	CD44-Positive Cancer Stem Cells Expressing Cellular Prion Protein Contribute to Metastatic Capacity in Colorectal Cancer. Cancer Research, 2013, 73, 2682-2694.	0.9	84
59	In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals. Cell Cycle, 2013, 12, 2395-2408.	2.6	30
60	Activated ERM Protein Plays a Critical Role in Drug Resistance of MOLT4 Cells Induced by CCL25. PLoS ONE, 2013, 8, e52384.	2.5	27
61	Dissociated Primary Human Prostate Cancer Cells Coinjected with the Immortalized Hs5 Bone Marrow Stromal Cells Generate Undifferentiated Tumors in NOD/SCID-Î ³ Mice. PLoS ONE, 2013, 8, e56903.	2.5	12
62	Prostate Cancer Stem Cells: A Brief Review. , 2013, , 37-49.		0
63	Distinct microRNA Expression Profiles in Prostate Cancer Stem/Progenitor Cells and Tumor-Suppressive Functions of let-7. Cancer Research, 2012, 72, 3393-3404.	0.9	172
64	The PSAâ^'/lo Prostate Cancer Cell Population Harbors Self-Renewing Long-Term Tumor-Propagating Cells that Resist Castration. Cell Stem Cell, 2012, 10, 556-569.	11.1	281
65	Understanding cancer stem cell heterogeneity and plasticity. Cell Research, 2012, 22, 457-472.	12.0	473
66	Abstract 132: MicroRNA expression profiling in tumorigenic prostate cancer cells and tumor suppressive functions of let-7. , 2012, , .		0
67	Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms. PLoS ONE, 2011, 6, e24397.	2.5	47
68	The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 2011, 17, 211-215.	30.7	1,276
69	Prostate cancer stem cells and their potential roles in metastasis. Journal of Surgical Oncology, 2011, 103, 558-562.	1.7	61
70	MicroRNA Regulation of Cancer Stem Cells. Cancer Research, 2011, 71, 5950-5954.	0.9	231
71	Defective Molecular Timer in the Absence of Nucleotides Leads to Inefficient Caspase Activation. PLoS ONE, 2011, 6, e16379.	2.5	11
72	Functional Remodeling of Benign Human Prostatic Tissues <i>In Vivo</i> by Spontaneously Immortalized Progenitor and Intermediate Cells. Stem Cells, 2010, 28, 344-356.	3.2	68

#	Article	IF	CITATIONS
73	An Old Player on a New Playground: Bmi-1 as a Regulator of Prostate Stem Cells. Cell Stem Cell, 2010, 7, 639-640.	11.1	7
74	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	3.2	307
75	Detection of Apoptosis in Cell-Free Systems. Methods in Molecular Biology, 2009, 559, 65-75.	0.9	12
76	Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice. Differentiation, 2009, 77, 324-334.	1.9	4
77	Methodologies in Assaying Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 85-138.	0.9	34
78	Prostate Cancer Stem Cells and Their Involvement in Metastasis. , 2009, , 455-461.		0
79	Cancer Stem Cells: Potential Mediators of Therapeutic Resistance and Novel Targets of Anti-cancer Treatments. , 2009, , 559-579.		0
80	Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16lNK4a and hTERT. International Journal of Cancer, 2008, 122, 1483-1495.	5.1	37
81	PC3 Human Prostate Carcinoma Cell Holoclones Contain Self-renewing Tumor-Initiating Cells. Cancer Research, 2008, 68, 1820-1825.	0.9	208
82	Critical and Distinct Roles of p16 and Telomerase in Regulating the Proliferative Life Span of Normal Human Prostate Epithelial Progenitor Cells. Journal of Biological Chemistry, 2008, 283, 27957-27972.	3.4	32
83	Hierarchical Organization of Prostate Cancer Cells in Xenograft Tumors: The CD44+α2β1+ Cell Population Is Enriched in Tumor-Initiating Cells. Cancer Research, 2007, 67, 6796-6805.	0.9	334
84	CD44 as a Functional Cancer Stem Cell Marker and a Potential Therapeutic Target. , 2007, , 317-334.		1
85	Cytosolic Accumulation of HSP60 during Apoptosis with or without Apparent Mitochondrial Release. Journal of Biological Chemistry, 2007, 282, 31289-31301.	3.4	207
86	Prostate cancer stem/progenitor cells: Identification, characterization, and implications. Molecular Carcinogenesis, 2007, 46, 1-14.	2.7	201
87	15-Lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins and Other Lipid Mediators, 2007, 82, 135-146.	1.9	50
88	Intracellular Nucleotides Act as Critical Prosurvival Factors by Binding to Cytochrome C and Inhibiting Apoptosome. Cell, 2006, 125, 1333-1346.	28.9	112
89	Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene, 2005, 24, 2020-2031.	5.9	88
90	Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene, 2005, 24, 3583-3595.	5.9	52

#	Article	IF	CITATIONS
91	Bax-dependent Regulation of Bak by Voltage-dependent Anion Channel 2. Journal of Biological Chemistry, 2005, 280, 19051-19061.	3.4	83
92	Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2â^' Cancer Cells Are Similarly Tumorigenic. Cancer Research, 2005, 65, 6207-6219.	0.9	873
93	Endothelial Cell Development, Vasculogenesis, Angiogenesis, and Tumor Neovascularization: An Update. Seminars in Thrombosis and Hemostasis, 2004, 30, 109-117.	2.7	54
94	Association of Active Caspase 8 with the Mitochondrial Membrane during Apoptosis: Potential Roles in Cleaving BAP31 and Caspase 3 and Mediating Mitochondrion-Endoplasmic Reticulum Cross Talk in Etoposide-Induced Cell Death. Molecular and Cellular Biology, 2004, 24, 6592-6607.	2.3	140
95	Evidence that Sp1 positively and Sp3 negatively regulate and androgen does not directly regulate functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) gene expression in normal human prostate epithelial cells. Oncogene, 2004, 23, 6942-6953.	5.9	27
96	Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration. Oncogene, 2003, 22, 1475-1485.	5.9	132
97	Reduced 15S-Lipoxygenase-2 Expression in Esophageal Cancer Specimens and Cells and Upregulation In Vitro by the Cyclooxygenase-2 Inhibitor, NS398. Neoplasia, 2003, 5, 121-127.	5.3	34
98	Subcellular Localization and Tumor-suppressive Functions of 15-Lipoxygenase 2 (15-LOX2) and Its Splice Variants. Journal of Biological Chemistry, 2003, 278, 25091-25100.	3.4	61
99	Mitochondrially Localized Active Caspase-9 and Caspase-3 Result Mostly from Translocation from the Cytosol and Partly from Caspase-mediated Activation in the Organelle. Journal of Biological Chemistry, 2003, 278, 17408-17420.	3.4	67
100	Evidence That Arachidonate 15-Lipoxygenase 2 Is a Negative Cell Cycle Regulator in Normal Prostate Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 16189-16201.	3.4	104
101	Early Mitochondrial Activation and Cytochrome c Up-regulation during Apoptosis. Journal of Biological Chemistry, 2002, 277, 50842-50854.	3.4	179
102	Fatty Acid Oxidation and Signaling in Apoptosis. Biological Chemistry, 2002, 383, 425-42.	2.5	103
103	Two molecularly distinct intracellular pathways to oligodendrocyte differentiation: role of a p53 family protein. EMBO Journal, 2001, 20, 5261-5268.	7.8	73
104	Long-Term Culture of Purified Postnatal Oligodendrocyte Precursor Cells. Journal of Cell Biology, 2000, 148, 971-984.	5.2	126
105	Evidence that Axon-Derived Neuregulin Promotes Oligodendrocyte Survival in the Developing Rat Optic Nerve. Neuron, 2000, 28, 81-90.	8.1	165
106	Prostate secretory protein (PSP94) suppresses the growth of androgen-independent prostate cancer cell line (PC3) and xenografts by inducing apoptosis. , 1999, 38, 118-125.		65
107	HORMONE-REFRACTORY PROSTATE CANCER CELLS EXPRESS FUNCTIONAL FOLLICLE-STIMULATING HORMONE RECEPTOR (FSHR). Journal of Urology, 1999, 161, 970-976.	0.4	104
108	12(S)-hydroxyeicosatetraenoic acid increases the actin microfilament content in B16a melanoma cells: A protein kinase-dependent process. , 1998, 77, 271-278.		25

#	Article	IF	CITATIONS
109	Actin cleavage in various tumor cells is not a critical requirement for executing apoptosis. Pathology and Oncology Research, 1998, 4, 135-145.	1.9	6
110	BMD188, A novel hydroxamic acid compound, demonstrates potent anti-prostate cancer effectsin vitro andin vivo by inducing apoptosis: requirements for mitochondria, reactive oxygen species, and proteases. Pathology and Oncology Research, 1998, 4, 179-190.	1.9	20
111	Apoptosis in the Absence of Cytochrome c Accumulation in the Cytosol. Biochemical and Biophysical Research Communications, 1998, 242, 380-384.	2.1	103
112	Target to apoptosis: A hopeful weapon for prostate cancer. , 1997, 32, 284-293.		158
113	Suppression of W256 carcinosarcoma cell apoptosis by arachidonic acid and other polyunsaturated fatty acids. International Journal of Cancer, 1997, 72, 1078-1087.	5.1	56
114	Target to apoptosis: A hopeful weapon for prostate cancer. Prostate, 1997, 32, 284-293.	2.3	7
115	Role of Protein Kinase C and Phosphatases in 12(S)-Hete-Induced Tumor Cell Cytoskeletal Reorganization. Advances in Experimental Medicine and Biology, 1997, 400A, 349-361.	1.6	16
116	Critical Role of Arachidonate Lipoxygenases in Regulating Apoptosis. Advances in Experimental Medicine and Biology, 1997, 407, 405-411.	1.6	8
117	Tyrosine phosphorylation of a â^1⁄430 kd protein precedes αvl²3 integrin-signaled endothelial cell spreading and motility on matrix proteins. Pathology and Oncology Research, 1996, 2, 21-29.	1.9	0
118	Prostate cancer old problems and new approaches. Pathology and Oncology Research, 1996, 2, 98-109.	1.9	2
119	Apoptosis: A current molecular analysis. Pathology and Oncology Research, 1996, 2, 117-131.	1.9	49
120	Prostate Cancer Old Problems and New Approaches. Pathology and Oncology Research, 1996, 2, 191-211.	1.9	10
121	Prostate cancer old problems and new approaches. Pathology and Oncology Research, 1996, 2, 276-292.	1.9	2
122	Dual Regulatory Role of Cyclooxygenase and Lipoxygenase and their Products in Cell Survival and Apoptosis. , 1996, , 133-139.		0
123	Melanoma cell spreading on fibronectin induced by 12(S)-HETE involves both protein kinase C- and protein tyrosine kinase-dependent focal adhesion formation and tyrosine phosphorylation of focal adhesion formation and tyrosine phosphorylation of focal adhesion kinase (pp125FAK). Journal of Cellular Physiology, 1995, 165, 291-306.	4.1	29
124	Prostacyclin and its analogues: antimetastatic effects and mechanisms of action. Cancer and Metastasis Reviews, 1994, 13, 349-364.	5.9	43
125	12-Lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer and Metastasis Reviews, 1994, 13, 365-396.	5.9	198
126	Enhanced Endothelial Cell Retraction Mediated by 12(S)-HETE: A Proposed Mechanism for the Role of Platelets in Tumor Cell Metastasis. Experimental Cell Research, 1994, 210, 1-9.	2.6	64

#	Article	IF	CITATIONS
127	Studies on the role of platelet eicosanoid metabolism and integrin αIIbβ3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 1993, 54, 92-101.	5.1	41
128	Thrombin increases the metastatic potential of tumor cells. International Journal of Cancer, 1993, 54, 793-806.	5.1	109
129	The Lipoxygenase Metabolite, 12(S)-HETE, Induces a Protein Kinase C-Dependent Cytoskeletal Rearrangement and Retraction of Microvascular Endothelial Cells. Experimental Cell Research, 1993, 207, 361-375.	2.6	52
130	Phenotypic properties of cultured tumor cells: Integrin αIIbβ3 expression, tumor-cell-induced platelet aggregation, and tumor-cell adhesion to endothelium as important parameters of experimental metastasis. International Journal of Cancer, 1993, 54, 338-347.	5.1	18
131	Platelets and Cancer Metastasis: More Than an Epiphenomenon. Seminars in Thrombosis and Hemostasis, 1992, 18, 392-415.	2.7	140
132	Thrombin enhances tumor cell adhesive and metastatic properties via increased αIIbβ3 expression on the cell surface. Thrombosis Research, 1992, 68, 233-245.	1.7	71
133	Hemostasis and malignancy: an overview. Cancer and Metastasis Reviews, 1992, 11, 223-226.	5.9	12
134	Platelets and cancer metastasis: A causal relationship?. Cancer and Metastasis Reviews, 1992, 11, 325-351.	5.9	263
135	Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer and Metastasis Reviews, 1992, 11, 353-375.	5.9	214
136	Fatty acid modulation of tumor cell-platelet-vessel wall interaction. Cancer and Metastasis Reviews, 1992, 11, 389-409.	5.9	51
137	Prostate cancer stem cells. , 0, , 15-30.		Ο