Hui xuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1396015/publications.pdf

Version: 2024-02-01

279798 395702 1,941 134 23 33 citations h-index g-index papers 134 134 134 1985 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct polymerization of a novel sulfonated poly(arylene ether ketone sulfone)/sulfonated poly(vinylalcohol) crosslinked membrane for direct methanol fuel cell applications. Journal of Membrane Science, 2015, 492, 505-517.	8.2	67
2	Structure evolution and mechanism of polyacrylonitrile and related copolymers during the stabilization. Journal of Materials Science, 2014, 49, 2864-2874.	3.7	59
3	A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties. Soft Matter, 2020, 16, 3319-3324.	2.7	52
4	The influence of core–shell structured modifiers on the toughness of poly (vinyl chloride). European Polymer Journal, 2004, 40, 2451-2456.	5.4	50
5	Rapidly recoverable, anti-fatigue, super-tough double-network hydrogels reinforced by macromolecular microspheres. Soft Matter, 2017, 13, 1357-1363.	2.7	47
6	Effect of Miscibility and Crystallization on the Mechanical Properties and Transparency of PVDF/PMMA Blends. Polymer-Plastics Technology and Engineering, 2013, 52, 221-227.	1.9	44
7	Enhanced properties of poly(lactic acid) with silica nanoparticles. Polymers for Advanced Technologies, 2016, 27, 1156-1163.	3.2	44
8	Study on the thermal oxidative stabilization reactions and the formed structures in polyacrylonitrile during thermal treatment. Polymer Degradation and Stability, 2017, 140, 104-113.	5.8	44
9	Toughening of nylon-6 with epoxy-functionalized acrylonitrile-butadiene-styrene copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2170-2180.	2.1	41
10	Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends. Polymer Engineering and Science, 2015, 55, 386-396.	3.1	40
11	Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene. Polymers, 2016, 8, 55.	4.5	37
12	Synthesis and properties of novel cross-linked composite sulfonated poly (aryl ether ketone sulfone) containing multiple sulfonic side chains for high-performance proton exchange membranes. Renewable Energy, 2019, 138, 1104-1113.	8.9	37
13	Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high \hat{l}^2 -value for direct methanol fuel cell applications. Electrochimica Acta, 2014, 146, 688-696.	5 . 2	35
14	Effect of ABS grafting degree and compatibilization on the properties of PBT/ABS blends. Polymer Composites, 2007, 28, 484-492.	4.6	33
15	Brittle-ductile transition in high-density polyethylene/glass-bead blends: Effects of interparticle distance and temperature. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1855-1859.	2.1	31
16	Deformation mechanism of polystyrene toughened with sub-micrometer monodisperse rubber particles. Polymer International, 2006, 55, 1215-1221.	3.1	29
17	Toughening of Polyamide-6 with a Maleic Anhydride Functionalized Acrylonitrile-Styrene-Butyl Acrylate Copolymer. Industrial & Engineering Chemistry Research, 2012, 51, 9235-9240.	3.7	29
18	Direct polymerization of novel functional sulfonated poly(arylene ether ketone sulfone)/sulfonated poly(vinyl alcohol) with high selectivity for fuel cells. RSC Advances, 2016, 6, 27725-27737.	3.6	27

#	Article	IF	Citations
19	Detailed Cyclization Pathways Identification of Polyacrylonitrile and Poly(acrylonitrile- <i>co</i> -itaconic acid) by in Situ FTIR and Two-Dimensional Correlation analysis. Industrial & Description of the control of t	3.7	27
20	The effects of chemical reaction on the microstructure and mechanical properties of polyacrylonitrile (PAN) precursor fibers. Journal of Materials Science, 2019, 54, 12592-12604.	3.7	27
21	Toughening of polyamide 6 with a maleic anhydride functionalized acrylonitrile–butadiene–styrene copolymer. Journal of Applied Polymer Science, 2008, 109, 2482-2490.	2.6	26
22	Cenozoic tectonic migration in the Bohai Bay Basin, East China. Geological Journal, 2016, 51, 188-202.	1.3	26
23	A facile functionalized routine for the synthesis of side-chain sulfonated poly(arylene ether ketone) Tj ETQq $1\ 1\ C$).784314 7.1	rgBT_/Overlo
24	Effect of wood flour as nucleating agent on the isothermal crystallization of poly(lactic acid). Polymers for Advanced Technologies, 2017, 28, 252-260.	3.2	25
25	Synthesis and characterization of PMMA/SiO ₂ organic–inorganic hybrid materials via RAFTâ€mediated miniemulsion polymerization. Polymer Composites, 2013, 34, 626-633.	4.6	24
26	In-situ Forming Composite Coating by Laser Cladding C/B ₄ C. Materials and Manufacturing Processes, 2015, 30, 743-747.	4.7	23
27	Transition from crazing to shear deformation in ABS/PVC blends. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 687-695.	2.1	22
28	Influence of core–shell particles structure on the morphology and brittleâ€ductile transition of PBT/ABSâ€∢i>g⟨/i>â€GMA blends. Polymer Composites, 2013, 34, 15-21.	4.6	22
29	Thermal, rheological, and mechanical properties of polylactide/poly(diethylene glycol adipate). Polymer Bulletin, 2013, 70, 3487-3500.	3.3	22
30	Effects of an itaconic acid comonomer on the structural evolution and thermal behaviors of polyacrylonitrile used for polyacrylonitrileâ€based carbon fibers. Journal of Applied Polymer Science, 2014, 131, .	2.6	22
31	Facile synthesis of large scale and narrow particle size distribution polymer particles via control particle coagulation during one-step emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 81-88.	4.7	22
32	Independence of the brittle-ductile transition from the rubber particle size for impact-modified poly(vinyl chloride). Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 696-702.	2.1	21
33	Large-scale and narrow dispersed latex formation in batch emulsion polymerization of styrene in methanol–water solution. Colloid and Polymer Science, 2014, 292, 519-525.	2.1	21
34	Super-tough, ultra-stretchable and strongly compressive hydrogels with core–shell latex particles inducing efficient aggregation of hydrophobic chains. Soft Matter, 2017, 13, 3352-3358.	2.7	21
35	Compatibilization of PP/EPDM blends by grafting acrylic acid to polypropylene and epoxidizing the diene in EPDM. Journal of Applied Polymer Science, 2006, 102, 3949-3954.	2.6	20
36	The suitable itaconic acid content in polyacrylonitrile copolymers used for PANâ€based carbon fibers. Journal of Applied Polymer Science, 2016, 133, .	2.6	20

#	Article	IF	Citations
37	Effect of aqueous phase composition on particle coagulation behavior in batch emulsion polymerization of styrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452, 159-164.	4.7	19
38	The role of structural evolution of polyacrylonitrile fibers during thermal oxidative stabilization on mechanical properties. Journal of Applied Polymer Science, 2021, 138, .	2.6	19
39	Influence of core–shell rubber particles synthesized with different initiation systems on the impact toughness of modified polystyrene. Journal of Applied Polymer Science, 2007, 103, 738-744.	2.6	18
40	Properties of Poly(butylene terephthalate)/Bisphenol A Polycarbonate Blends Toughening with Epoxy-Functionalized Acrylonitrile–Butadiene–Styrene Particles. Journal of Macromolecular Science - Physics, 2013, 52, 861-872.	1.0	18
41	Submicrometerâ€sized rubber particles as "crazeâ€bridge―for toughening polystyrene/highâ€impact polystyrene. Journal of Applied Polymer Science, 2013, 129, 224-229.	2.6	18
42	Effect of mixing poly(lactic acid) with glycidyl methacrylate grafted poly(ethylene octene) on optical and mechanical properties of the blown films. Polymer Engineering and Science, 2015, 55, 2801-2813.	3.1	18
43	In situ charge neutralization-controlled particle coagulation and its effects on the particle size distribution in the one-step emulsion polymerization. European Polymer Journal, 2016, 83, 278-287.	5.4	18
44	Morphology and mechanical properties of ABS blends prepared from emulsion-polymerized PB-g-SAN impact modifier with AIBN as initiator. Journal of Applied Polymer Science, 2007, 105, 1237-1243.	2.6	17
45	Toughening of polyvinylchloride by methyl methacrylate–butadiene–styrene core–shell rubber particles: Influence of rubber particle size. Polymer Engineering and Science, 2012, 52, 2523-2529.	3.1	17
46	Modification of the grafting character to prepare PA6/ABS-g-MA blends with higher toughness and stiffness. Polymer Bulletin, 2013, 70, 1853-1862.	3.3	17
47	Compatibilization effect of MMA-co-GMA copolymers on the properties of polyamide 6/Poly(vinylidene) Tj ETQq1	1 0.78431 2.4	4 ₁ gBT /Ove
48	Simulation of oil–gas migration and accumulation in the East China Sea Continental Shelf Basin: a case study from the Xihu Depression. Geological Journal, 2016, 51, 229-243.	1.3	17
49	Structure and performance of waterborne polyurethane-acrylate composite emulsions for industrial coatings: effect of preparation methods. Colloid and Polymer Science, 2020, 298, 139-149.	2.1	15
50	Environmental pHâ€responsive fluorescent PEGâ€polyurethane for potential optical imaging. Journal of Applied Polymer Science, 2013, 129, 846-852.	2.6	14
51	Gravity anomaly in the southern South China Sea: a connection of Moho depth to the nature of the sedimentary basins' crust. Geological Journal, 2016, 51, 244-262.	1.3	14
52	Modification of the core–shell ratio to prepare PB-g-(MMA-co-St-co-GMA) particle-toughened poly(butylene terephthalate) and polycarbonate blends with balanced stiffness and toughness. RSC Advances, 2014, 4, 58880-58887.	3.6	13
53	Mechanical properties, miscibility, thermal stability, and rheology of poly(propylene carbonate) and poly(ethylene-co-vinyl acetate) blends. Polymer Bulletin, 2015, 72, 851-865.	3.3	13
54	Structural evolution of poly(acrylonitrileâ€coâ€dimethyl itaconate) copolymer during thermal oxidative stabilization. Polymers for Advanced Technologies, 2015, 26, 322-329.	3.2	13

#	Article	IF	CITATIONS
55	Solid–Liquid Equilibrium of Isomaltulose in Five Pure Solvents and Four Binary Solvents from (283.15) Tj ETQq1	1 _{1.9} 78431	l4.rgBT /Ov
56	Effects of the polybutadiene/poly(styrene-co-acrylonitrile) ratio in a polybutadiene-g-poly(styrene-co-acrylonitrile) impact modifier on the morphology and mechanical behavior of acrylonitrile-butadiene-styrene blends. Journal of Applied Polymer Science, 2005, 98, 2165-2171.	2.6	12
57	Structure–properties relationship in toughening of poly(butylene terephthalate) with core–shell modifier. Journal of Applied Polymer Science, 2006, 102, 5363-5371.	2.6	12
58	Hydrophilicity of polymer effects on controlled particle coagulation in batch emulsion polymerization. Colloid and Polymer Science, 2014, 292, 1347-1353.	2.1	12
59	The surface modification of diatomite, thermal, and mechanical properties of poly(vinyl) Tj ETQq1 1 0.784314 rgB	T ₃ Qverloc	k 10 Tf 50
60	Waterborne polyurethaneâ€acrylateâ€polyaniline: Interfacial hydrogen bonding for enhancing the antistatic, damping, and mechanical properties. Polymers for Advanced Technologies, 2022, 33, 2667-2681.	3.2	12
61	Synthesis of montmorillonite-modified acrylic impact modifiers and toughening of poly(vinyl) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 T
62	Synthesis and characterization of fluorescent PEG-polyurethane with free carboxyl groups. Journal of Polymer Research, 2012, 19, 1.	2.4	11
63	Rapid formation of highly stretchable and notch-insensitive hydrogels. RSC Advances, 2016, 6, 30570-30576.	3.6	11
64	Facile synthesis of large sized and monodispersed polymer particles using particle coagulation mechanism: an overview. Colloid and Polymer Science, 2017, 295, 749-757.	2.1	11
65	Comprehensive and quantitative study on the thermal oxidative stabilization reactions in poly(acrylonitrileâ€∢i>coàâ€itaconic acid) copolymer. Journal of Applied Polymer Science, 2018, 135, 45934.	2.6	11
66	Effects of the molecular structure on the vibration reduction and properties of hyperbranched waterborne polyurethane–acrylate for damping coatings. Journal of Applied Polymer Science, 2019, 136, 47733.	2.6	11
67	Sustainable composites from biodegradable poly(butylene succinate) modified with thermoplastic starch and poly(butylene adipate- <i>co</i> -terephthalate): preparation and performance. New Journal of Chemistry, 2021, 45, 17384-17397.	2.8	11
68	Properties of rubber-toughened Polyvinyl chloride blends based on core-shell modifier with different particle morphology. Polymer Bulletin, 2007, 59, 699-708.	3.3	10
69	Core–shell particles designed for toughening poly(vinyl chloride). Polymer International, 2010, 59, 980-985.	3.1	10
70	Sulfonated poly (arylene ether ketone sulfone)/ZrP composite membranes for medium-high temperature operation of PEMFC. Journal of Polymer Research, 2013, 20, 1.	2.4	10
71	Particle Nucleation and Growth in the Emulsion Polymerization of Styrene: Effect of Monomer/Water Ratio and Electrolyte Concentration. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 147-154.	2.2	10
72	Effect of the matrix plasticization behavior on mechanical properties of PVC/ABS blends. Journal of Polymer Engineering, 2017, 37, 239-245.	1.4	10

#	Article	IF	CITATIONS
73	Preparation of monodisperse, sub-micrometer polymer particles by one-step emulsion polymerization under particle coagulation. Colloid and Polymer Science, 2016, 294, 787-793.	2.1	9
74	Modification of the reactive core-shell particles properties to prepare PBT/PC blends with higher toughness and stiffness. Journal of Polymer Research, 2017, 24, 1.	2.4	9
75	Preparation and Characterization of PMMA/MMT Organic-Inorganic Hybrid Materials via RAFT Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 653-660.	2.2	8
76	Toughening polystyrene by core–shell grafting copolymer polybutadiene-graft-polystyrene with potassium persulfate as initiator. Journal of Industrial and Engineering Chemistry, 2013, 19, 823-828.	5.8	8
77	The influence of the arrangement of styrene in methyl methacrylate/butadiene/styrene on the properties of PMMA/SAN/MBS blends. Polymers for Advanced Technologies, 2014, 25, 273-278.	3.2	8
78	Toughening of Poly(ethylene terephthalate) and Optimizing of the Compatibilization Between PET and EPDM by Functionalized EPDM. Polymer-Plastics Technology and Engineering, 2014, 53, 141-149.	1.9	8
79	Poly(methyl methacrylate)-b-poly(butyl acrylate) Block Copolymers Synthesized via RAFT Emulsion Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 279-285.	2.2	8
80	Synergistic Effect of Polycarbonate on Reactive Core-Shell Particles Toughened Poly(Butylene) Tj ETQq0 0 0 rgI	BT /Qverloc	k 18 Tf 50 46
81	Toughness, dynamic mechanical property, and morphology of polyvinylchloride/acrylonitrile-styrene-butyl acrylate blends. Journal of Vinyl and Additive Technology, 2016, 22, 43-50.	3.4	8
82	Preparation, characterization and enhanced performance of functional crosslinked membranes using poly(vinyl alcohol) as macromolecular crosslinker for fuel cells. RSC Advances, 2016, 6, 41428-41438.	3.6	8
83	Effect of core-shell particles dispersed morphology on the toughening behavior of PBT/PC blends. Journal of Polymer Research, 2016, 23, 1.	2.4	8
84	Study on the multiple cyclization reactions and the formed structures in poly(acrylonitrileâ€coâ€itaconic acid) copolymers during thermal treatment. Polymers for Advanced Technologies, 2017, 28, 1662-1669.	3.2	8
85	Study on thermal oxidative stabilization reactions of poly(acrylonitrileâ€ <i>co</i> â€itaconic acid) copolymers synthesized at different polymerization stages. Journal of Applied Polymer Science, 2017, 134, 45245.	2.6	8
86	Toughness and Transparency of Poly(vinyl chloride)/Methyl Methacrylate-Butadiene-Styrene Blends with Varied Shell Phase Composition of Core-Shell Theories. Polymer-Plastics Technology and Engineering, 2009, 48, 953-957.	1.9	7
87	Toughening Poly (Vinyl Chloride) by PS/PB/PMMA Three-Layer Particles. Polymer-Plastics Technology and Engineering, 2013, 52, 814-819.	1.9	7
88	Co-toughened Polystyrene by Submicrometer-Sized Core–Shell Rubber Particles and Micrometer-Sized Salami Rubber Particles. Industrial & Engineering Chemistry Research, 2013, 52, 5079-5084.	3.7	7
89	Enhanced properties of poly(vinylidene fluoride) with low filler content SiO2-g-(MMA-co-BA) core-shell nanoparticles. Journal of Polymer Research, 2016, 23, 1.	2.4	7
90	Different deformation mechanisms of two modifiedâ€polystyrene bimodal systems. Polymer International, 2010, 59, 738-742.	3.1	6

#	Article	IF	CITATIONS
91	Highâ€efficiency impact modifier prepared by coagulation emulsion polymerization through internal voiding toughening mechanism. Polymers for Advanced Technologies, 2015, 26, 182-189.	3.2	6
92	Crosslinking network structure effects on particle coagulation in the emulsion polymerization of styrene in methanol solution. Colloid and Polymer Science, 2015, 293, 1577-1581.	2.1	6
93	Inhibited transesterification on the properties of reactive core-shell particles toughened poly(butylene terephthalate) and polycarbonate blends. Journal of Polymer Research, 2015, 22, 1.	2.4	6
94	Lipophilic modification of T-ZnOw and optical properties of T-ZnOw/PVB composite films. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
95	Hydroxylâ€terminated polybutadiene based waterborne polyurethane acrylate emulsions: Synthesis, characterization, and damping property. Journal of Applied Polymer Science, 2021, 138, 50300.	2.6	6
96	Effect of aging time on properties of acrylic impact modifier modified bisphenol A polycarbonate. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2715-2724.	2.1	5
97	A modified poly(aryle ether ketone sulfone) proton exchange membrane with <i>in situ</i> polymerized polypyrrole for the direct methanol fuel cells. Journal of Applied Polymer Science, 2011, 120, 914-920.	2.6	5
98	Investigation on the miscibility of the blends of poly(methyl methacrylate) and poly(styreneâ€∢i>coà€acrylonitrile). Journal of Applied Polymer Science, 2012, 123, 292-298.	2.6	5
99	Phase separation of impactâ€modified PVC/PMMA blends under meltâ€blending conditions. Journal of Vinyl and Additive Technology, 2013, 19, 11-17.	3.4	5
100	Preparation and characterization of poly(methyl methacrylate)/SiO2 organic–inorganic hybrid materials via RAFT-mediated miniemulsion Polymerization. Journal of Polymer Research, 2014, 21, 1.	2.4	5
101	Toughening Polystyrene by Core-Shell Rubber Particles: Analysis of the Internal Structure and Properties. Polymers and Polymer Composites, 2015, 23, 317-324.	1.9	5
102	MICROSTRUCTURE AND WEAR RESISTANCE OF COMPOSITE COATING BY LASER CLADDING Al/TiN ON THE Tiâ \in "4V SUBSTRATE. Surface Review and Letters, 2015, 22, 1550044.	1.1	5
103	Kinetic investigations of RAFT polymerization: Difunctional RAFT agent mediated polymerization of methyl methacrylate and styrene. Macromolecular Research, 2015, 23, 67-73.	2.4	5
104	Exothermal Behavior and Particle Scale Evolution in High Solid Content One-Step Batch Emulsion Polymerization. Journal of Dispersion Science and Technology, 2015, 36, 205-212.	2.4	5
105	Kinetic study of RAFT homopolymerization and copolymerization in emulsion. Iranian Polymer Journal (English Edition), 2015, 24, 113-122.	2.4	4
106	Effect of matrix chain entanglement on toughening mechanism evolution of acrylic impact modifier toughened methyl methacrylate-N-phenylmaleimide copolymers. Journal of Polymer Research, 2016, 23, 1.	2.4	4
107	Contribution of Ungrafted Segments in Core-Shell Impact Modifier in the Toughening of PBT Resins by Epoxy Functionalized Poly(Butadiene- <i>graft</i> -Styrene). Polymer-Plastics Technology and Engineering, 2018, 57, 1697-1705.	1.9	4
108	Effect of nitrogen pretreatment on the skinâ€core structure of thermal oxidative stabilization polyacrylonitrile fibers. Journal of Applied Polymer Science, 2021, 138, 50920.	2.6	4

#	Article	IF	CITATIONS
109	Effect of the composition of αâ€MSAN copolymer on the miscibility of PVC/αâ€MSAN blends. Journal of Applied Polymer Science, 2008, 108, 3016-3023.	2.6	3
110	Effect of Epoxy-Functionalised Core-Shell Particles on Properties of Poly(Butylenes Terephthalate) (PBT). Polymers and Polymer Composites, 2008, 16, 271-276.	1.9	3
111	Photoacoustic Study of $\$$ mathrm $\{Y\}^{3+}$ \$ Y 3 + -, $\$$ mathrm $\{Tb\}^{3+}$ \$ Tb 3 + -, and $\$$ mathrm $\{Er\}^{3+}$ \$ Er 3 + -Doped Zinc Oxide Nanocrystals. International Journal of Thermophysics, 2015, 36, 1336-1341.	2.1	3
112	A novel approach to prepare large-scale and narrow-dispersed latex particles by emulsion polymerization based on particle coagulation mechanism. Designed Monomers and Polymers, 2016, 19, 119-127.	1.6	3
113	Stabilizing effect of oxygen on the initial stages of poly(methyl methacrylate) degradation. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1459-1467.	3.6	3
114	Origin and model of transform faults in the Okinawa Trough. Marine Geophysical Researches, 2017, 38, 137-147.	1.2	3
115	Improved compatibility of PET/HDPE blend by using GMA grafted thermoplastic elastomer. Polymer-Plastics Technology and Materials, 2020, 59, 1887-1898.	1.3	3
116	Preparation and Characterization of Glucose and Sulfamate Doubleâ€Modified Biodegradable Waterborne Polyurethane. ChemistrySelect, 2021, 6, 8140-8149.	1.5	3
117	Synthesis of subâ€micrometer core–shell rubber particles with 1,2â€azobisisobutyronitrile as initiator and deformation mechanisms of modified polystyrene under various conditions. Polymer International, 2009, 58, 1196-1201.	3.1	2
118	The preparation and thermodynamic behaviors of chlorosulfonated polyethylene. Journal of Applied Polymer Science, 2010, 116, 2095-2100.	2.6	2
119	Study on modification of polylactide by functional polymer. , 2011, , .		2
120	The influence of the internal structure of core–shell particles on poly(vinyl chloride)/(methyl) Tj ETQq0 0 0 rgE	BT /9.yerloo	k 10 Tf 50 30
121	Kinetics study of living microemulsion polymerization mediated by reversible addition-fragmentation chain transfer. Journal of Polymer Research, 2014, 21, 1.	2.4	2
122	Effect of Polymer Characteristics on Particle Formation and Growth in Batch Emulsion Polymerization. Journal of Dispersion Science and Technology, 2015, 36, 1320-1326.	2.4	2
123	In situ charge neutralization on governing particle coagulation nucleation and size distribution in macroemulsion polymerization. RSC Advances, 2016, 6, 88701-88706.	3.6	2
124	Study of Lanthanide Complexes with BTFA in Silica Gels by Photoacoustic Spectroscopy. International Journal of Thermophysics, 2016, 37, 1.	2.1	2
125	Toughening of chlorinated polyvinylchloride with acrylonitrile-butadiene-styrene graft copolymers. Journal of Vinyl and Additive Technology, 2016, 22, 13-18.	3.4	2
126	Synthesis of Sub-100Ânm and Narrow Particle Size Distribution Cationic Latex by One-Step Emulsion Polymerization. Journal of Dispersion Science and Technology, 2016, 37, 48-55.	2.4	2

#	Article	IF	CITATIONS
127	Tuning Molecular Composition for Better Cross-section Homogeneity of Thermal Oxidative Stabilized Polyacrylonitrile for Carbon Materials. Fibers and Polymers, 2022, 23, 1515-1524.	2.1	2
128	Influence of the tert-dodecyl mercaptan content in poly(acrylonitrile-butadiene-styrene) on properties of chlorinated polyvinyl chloride/poly(acrylonitrile-butadiene-styrene) blends. Polymer Engineering and Science, 2012, 52, 820-825.	3.1	1
129	Mechanical and Morphological Properties and Deformation Mechanisms of Acrylonitrile-Butadiene-Styrene/Poly(ϊμ-Caprolactone) Blends with Varied Matrix Composition. Journal of Macromolecular Science - Physics, 2014, 53, 1533-1542.	1.0	1
130	Cavitation in hard/soft/hard three-layer core-shell structural rubber particles. Journal of Polymer Research, 2014, 21, 1.	2.4	1
131	Research of the synthesis and film performance of silica/poly(St-BA-MPS) core-shell latexes obtained by miniemulsion co-polymerization. Macromolecular Research, 2017, 25, 408-414.	2.4	1
132	Synthesis of large-scale, narrowly dispersed, highly cross-linked, and spherical latex particles via one-step emulsion polymerization through particle coagulation. Journal of Dispersion Science and Technology, 2017, 38, 1147-1153.	2.4	1
133	Crosslinking network structure governing particle shape and size distribution by one-step emulsion polymerization in the presence of particle coagulation. Journal of Dispersion Science and Technology, 2017, 38, 1295-1301.	2.4	1
134	Photoacoustic Study on the Structural Variation of Titania Nanomaterials Using the Pr (III) Ion as a Spectral Probe. International Journal of Thermophysics, 2016, 37, 1.	2.1	0