Michael G Ritchie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1395857/publications.pdf

Version: 2024-02-01

180 papers 10,721 citations

57758 44 h-index 94 g-index

196 all docs

196 docs citations

196 times ranked 10593 citing authors

#	Article	IF	CITATIONS
1	Bringing bioinformatics to schools with the 4273pi project. PLoS Computational Biology, 2022, 18, e1009705.	3.2	2
2	Experimental sexual selection reveals rapid evolutionary divergence in sexâ€specific transcriptomes and their interactions following mating. Molecular Ecology, 2022, 31, 3374-3388.	3.9	5
3	A genomeâ€wide investigation of adaptive signatures in proteinâ€coding genes related to tool behaviour in New Caledonian and Hawaiian crows. Molecular Ecology, 2021, 30, 973-986.	3.9	2
4	Sex-specific responses to cold in a very cold-tolerant, northern Drosophila species. Heredity, 2021, 126, 695-705.	2.6	13
5	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster < /i>in Europe. Virus Evolution, 2021, 7, veab031.</i>	4.9	25
6	Experimental evolution supports signatures of sexual selection in genomic divergence. Evolution Letters, 2021, 5, 214-229.	3.3	15
7	The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Molecular Ecology, 2021, 30, 3575-3589.	3.9	35
8	Cold adaptation drives population genomic divergence in the ecological specialist, <i>Drosophila montana </i> . Molecular Ecology, 2021, 30, 3783-3796.	3.9	10
9	DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biology and Evolution, 2021, 13, .	2.5	45
10	Divergence and correlated evolution of male wing spot and courtship display between Drosophila nepalensis and D. trilutea. Insect Science, 2021, , .	3.0	1
11	Purifying Selection in Corvids Is Less Efficient on Islands. Molecular Biology and Evolution, 2020, 37, 469-474.	8.9	24
12	Does the response of D. melanogaster males to intrasexual competitors influence sexual isolation?. Behavioral Ecology, 2020, 31, 487-492.	2.2	4
13	Dinner and a show: The role of male copulatory courtship song and female blood-feeding in the reproductive success of Lutzomyia longipalpis from Lapinha, Brazil. Infection, Genetics and Evolution, 2020, 85, 104470.	2.3	8
14	Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Molecular Biology and Evolution, 2020, 37, 2661-2678.	8.9	104
15	Within-population sperm competition intensity does not predict asymmetry in conpopulation sperm precedence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200071.	4.0	12
16	Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evolution Letters, 2020, 4, 19-33.	3.3	32
17	Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. Journal of Evolutionary Biology, 2020, 33, 990-1005.	1.7	11
18	Evolution and diversity of the courtship repertoire in the <i>Drosophila montium</i> species group (Diptera: Drosophilidae). Journal of Evolutionary Biology, 2019, 32, 1124-1140.	1.7	11

#	Article	IF	CITATIONS
19	Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. Journal of Experimental Biology, 2019, 222, .	1.7	34
20	Behavioural mechanisms of sexual isolation involving multiple modalities and their inheritance. Journal of Evolutionary Biology, 2019, 32, 243-258.	1.7	10
21	Increased socially mediated plasticity in gene expression accompanies rapid adaptive evolution. Ecology Letters, 2018, 21, 546-556.	6.4	21
22	Sexual selection predicts species richness across the animal kingdom. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180173.	2.6	43
23	Differential gene expression is not required for facultative sex allocation: a transcriptome analysis of brain tissue in the parasitoid wasp <i>Nasonia vitripennis</i> . Royal Society Open Science, 2018, 5, 171718.	2.4	6
24	Social effects on fruit fly courtship song. Ecology and Evolution, 2018, 9, 410-416.	1.9	15
25	Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes. Molecular Ecology, 2018, 27, 3905-3924.	3.9	15
26	Inter and Intraspecific Genomic Divergence in Drosophila montana Shows Evidence for Cold Adaptation. Genome Biology and Evolution, 2018, 10, 2086-2101.	2.5	25
27	A rare exception to Haldane's rule: Are X chromosomes key to hybrid incompatibilities?. Heredity, 2017, 118, 554-562.	2.6	13
28	Paternity analysis of wild aught females shows that sperm package size and placement influence fertilization success in the bushcricket <i><scp>P</scp>holidoptera griseoaptera</i> Ecology, 2017, 26, 3050-3061.	3.9	5
29	Mate choice intensifies motor signalling in Drosophila. Animal Behaviour, 2017, 133, 169-187.	1.9	15
30	Identifying consistent allele frequency differences in studies of stratified populations. Methods in Ecology and Evolution, 2017, 8, 1899-1909.	5. 2	47
31	Asymmetric paternal effect on offspring size linked to parentâ€ofâ€origin expression of an insulinâ€like growth factor. Ecology and Evolution, 2017, 7, 4465-4474.	1.9	12
32	Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nature Communications, 2017, 8, 2072.	12.8	39
33	Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi. PLoS ONE, 2016, 11, e0165724.	2.5	11
34	Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in <i>Nasonia</i> Vasps. G3: Genes, Genomes, Genetics, 2016, 6, 1549-1562.	1.8	9
35	Postmating–prezygotic isolation between two allopatric populations of <i>Drosophila montana</i> fertilisation success differs under sperm competition. Ecology and Evolution, 2016, 6, 1679-1691.	1.9	5
36	Transparency and reproducibility in evolutionary research. Evolution; International Journal of Organic Evolution, 2016, 70, 1433-1434.	2.3	3

3

#	Article	IF	Citations
37	Preparing for Winter: The Transcriptomic Response Associated with Different Day Lengths in <i>Drosophila montana</i> . G3: Genes, Genomes, Genetics, 2016, 6, 1373-1381.	1.8	36
38	Transparency and reproducibility in evolutionary research. Ecology and Evolution, 2016, 6, 4605-4606.	1.9	4
39	<scp>JEB</scp> Editorial 2016. Journal of Evolutionary Biology, 2016, 29, 472-472.	1.7	0
40	Sexual selection and assortative mating: an experimental test. Journal of Evolutionary Biology, 2016, 29, 1307-1316.	1.7	24
41	A Balanced Data Archiving Policy for Long-Term Studies. Trends in Ecology and Evolution, 2016, 31, 84-85.	8.7	17
42	The locus of sexual selection: moving sexual selection studies into the postâ€genomics era. Journal of Evolutionary Biology, 2015, 28, 739-755.	1.7	69
43	Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle. Nature Communications, 2015, 6, 8449.	12.8	78
44	Phenotypic differentiation in love song traits among sibling species of the Lutzomyia longipalpis complex in Brazil. Parasites and Vectors, 2015, 8, 290.	2.5	22
45	Oviposition but Not Sex Allocation Is Associated with Transcriptomic Changes in Females of the Parasitoid Wasp Nasonia vitripennis. G3: Genes, Genomes, Genetics, 2015, 5, 2885-2892.	1.8	11
46	Insect capa neuropeptides impact desiccation and cold tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2882-2887.	7.1	111
47	A test of genetic models for the evolutionary maintenance of same-sex sexual behaviour. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150429.	2.6	20
48	The genetic architecture of sexually selected traits in two natural populations of Drosophila montana. Heredity, 2015, 115, 565-572.	2.6	7
49	Genome-Wide DNA Methylation Patterns in Wild Samples of Two Morphotypes of Threespine Stickleback (Gasterosteus aculeatus). Molecular Biology and Evolution, 2015, 32, 888-895.	8.9	43
50	How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?. Heredity, 2015, 115, 13-21.	2.6	43
51	Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments. Molecular Ecology, 2015, 24, 2809-2819.	3.9	28
52	Genome-wide tests for introgression between cactophilic <i>Drosophila</i> inversions during speciation. Evolution; International Journal of Organic Evolution, 2015, 69, 1178-1190.	2.3	70
53	The Genome and Methylome of a Beetle with Complex Social Behavior, <i>Nicrophorus vespilloides </i> (Coleoptera: Silphidae). Genome Biology and Evolution, 2015, 7, 3383-3396.	2.5	87
54	Copulation duration, but not paternity share, potentially mediates inbreeding avoidance in Drosophila montana. Behavioral Ecology and Sociobiology, 2014, 68, 2013-2021.	1.4	4

#	Article	IF	CITATIONS
55	The evolution of novelty in conserved genes; evidence of positive selection in the Drosophila fruitless gene is localised to alternatively spliced exons. Heredity, 2014, 112, 300-306.	2.6	15
56	Mating system variation drives rapid evolution of the female transcriptome in <i>Drosophila pseudoobscura </i> . Ecology and Evolution, 2014, 4, 2186-2201.	1.9	38
57	EVOLUTION OF DIVERGENT FEMALE MATING PREFERENCE IN RESPONSE TO EXPERIMENTAL SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2014, 68, 2524-2533.	2.3	31
58	Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System. Current Biology, 2014, 24, 229-241.	3.9	95
59	Rapid Convergent Evolution in Wild Crickets. Current Biology, 2014, 24, 1369-1374.	3.9	121
60	The genetics of insect mating systems. , 2014, , 59-77.		3
61	Measuring same-sex sexual behaviour: the influence of the male social environment. Animal Behaviour, 2013, 86, 91-100.	1.9	21
62	4273Ï€: Bioinformatics education on low cost ARM hardware. BMC Bioinformatics, 2013, 14, 243.	2.6	19
63	Courtship Patterns in the <i>Drosophila montium </i> Species Subgroup: Repeated Loss of Precopulatory Courtship?. Zoological Science, 2013, 30, 1056-1062.	0.7	10
64	Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.	1.7	1,735
65	Pulling together or pulling apart: hybridization in theory and practice. Journal of Evolutionary Biology, 2013, 26, 294-298.	1.7	24
66	How might epigenetics contribute to ecological speciation?. Environmental Epigenetics, 2013, 59, 686-696.	1.8	30
67	Tissue-Specific Transcriptomics in the Field Cricket <i>Teleogryllus oceanicus</i> . G3: Genes, Genomes, Genetics, 2013, 3, 225-230.	1.8	30
68	Immune anticipation of mating in <i>Drosophila</i> : <i>Turandot M</i> promotes immunity against sexually transmitted fungal infections. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132018.	2.6	41
69	TRANSCRIPTOME-WIDE EXPRESSION VARIATION ASSOCIATED WITH ENVIRONMENTAL PLASTICITY AND MATING SUCCESS IN CACTOPHILICDROSOPHILA MOJAVENSIS. Evolution; International Journal of Organic Evolution, 2013, 67, 1950-1963.	2.3	28
70	Acoustic communication in insect disease vectors. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 26-33.	1.6	19
71	Two distinct genomic regions, harbouring the period and fruitless genes, affect male courtship song in Drosophila montana. Heredity, 2012, 108, 602-608.	2.6	9
72	The genomic response to courtship song stimulation in female <i>Drosophila melanogaster</i> Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1359-1365.	2.6	50

#	Article	IF	CITATIONS
73	Variation in sexual dimorphism and assortative mating do not predict genetic divergence in the sexually dimorphic Goodeid fish Girardinichthys multiradiatus. Environmental Epigenetics, 2012, 58, 440-452.	1.8	12
74	What do we need to know about speciation?. Trends in Ecology and Evolution, 2012, 27, 27-39.	8.7	358
75	Sexual selection on song and cuticular hydrocarbons in two distinct populations of <i>Drosophila montana</i> . Ecology and Evolution, 2012, 2, 80-94.	1.9	37
76	Incipient speciation in Drosophila melanogaster involves chemical signals. Scientific Reports, 2012, 2, 224.	3.3	63
77	Copulatory song in three species of the Drosophila montium subgroup extends copulation and shows unusual genetic control. Animal Behaviour, 2012, 83, 233-238.	1.9	9
78	Modelâ€based comparisons of phylogeographic scenarios resolve the intraspecific divergence of cactophilic <i>Drosophila mojavensis</i> . Molecular Ecology, 2012, 21, 3293-3307.	3.9	36
79	Multiple quantitative trait loci influence intra-specific variation in genital morphology between phylogenetically distinct lines of Drosophila montana. Journal of Evolutionary Biology, 2011, 24, 1879-1886.	1.7	10
80	Signatures of selection and sex-specific expression variation of a novel duplicate during the evolution of the Drosophila desaturase gene family. Molecular Ecology, 2011, 20, no-no.	3.9	17
81	Sexual Selection: Do Flies Lie with Asymmetric Legs?. Current Biology, 2011, 21, R233-R234.	3.9	4
82	Animal Communication: Flies' Ears Are Tuned In. Current Biology, 2011, 21, R278-R280.	3.9	1
83	Sexual and postmating reproductive isolation between allopatric Drosophila montana populations suggest speciation potential. BMC Evolutionary Biology, 2011, 11, 68.	3.2	36
84	Speciation: Mosquitoes Singing inÂHarmony. Current Biology, 2010, 20, R58-R60.	3.9	4
85	GENETICS OF INCIPIENT SPECIATION IN DROSOPHILA MOJAVENSIS. III. LIFE-HISTORY DIVERGENCE IN ALLOPATRY AND REPRODUCTIVE ISOLATION. Evolution; International Journal of Organic Evolution, 2010, 64, 3549-3569.	2.3	34
86	A microsatellite linkage map for <i>Drosophila montana</i> shows large variation in recombination rates, and a courtship song trait maps to an area of low recombination. Journal of Evolutionary Biology, 2010, 23, 518-527.	1.7	15
87	When are vomiting males attractive? Sexual selection on condition-dependent nuptial feeding in Drosophila subobscura. Behavioral Ecology, 2009, 20, 289-295.	2.2	40
88	Genetics of speciation. Heredity, 2009, 102, 1-3.	2.6	21
89	Identification of quantitative trait loci function through analysis of multiple cuticular hydrocarbons differing between Drosophila simulans and Drosophila sechellia females. Heredity, 2009, 103, 416-424.	2.6	49
90	GENETICS OF INCIPIENT SPECIATION IN $\langle i \rangle$ DROSOPHILA MOJAVENSIS: $\langle i \rangle$ II. HOST PLANTS AND MATING STATUS INFLUENCE CUTICULAR HYDROCARBON QTL EXPRESSION AND G \tilde{A} — E INTERACTIONS. Evolution; International Journal of Organic Evolution, 2009, 63, 1712-1730.	2.3	63

#	Article	IF	Citations
91	Sites of evolutionary divergence differ between olfactory and gustatory receptors of Drosophila. Biology Letters, 2009, 5, 244-247.	2.3	15
92	Mitochondrial DNA variation and GIS analysis confirm a secondary origin of geographical variation in the bushcricket Ephippiger ephippiger (Orthoptera: Tettigonioidea), and resurrect two subspecies. Molecular Ecology, 2008, 10, 603-611.	3.9	28
93	Thirteen polymorphic microsatellite DNA loci from whiptails of the genus <i>Aspidoscelis </i> (Teiidae:) Tj ETQq1 1	0.784314 4.8	gBT/Ove
94	Divergence in Multiple Courtship Song Traits between Drosophila santomea and D. yakuba. Ethology, 2008, 114, 728-736.	1.1	19
95	<i>Drosophila</i> chemoreceptor gene evolution: selection, specialization and genome size. Molecular Ecology, 2008, 17, 1648-1657.	3.9	109
96	Behavioural Genetics: The Social Fly. Current Biology, 2008, 18, R862-R864.	3.9	5
97	Introduction. Speciation in plants and animals: pattern and process. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2965-2969.	4.0	38
98	Evolution of a Complex Locus: Exon Gain, Loss and Divergence at the Gr39a Locus in Drosophila. PLoS ONE, 2008, 3, e1513.	2.5	17
99	Feathers, Females, and Fathers. Science, 2007, 318, 54-55.	12.6	3
100	Sexual Selection and Speciation. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 79-102.	8.3	613
101	Beyond the point of no return? A comparison of genetic diversity in captive and wild populations of two nearly extinct species of Goodeid fish reveals that one is inbred in the wild. Heredity, 2007, 98, 360-367.	2.6	21
102	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
103	CHARACTERIZATION OF FEMALE PREFERENCE FUNCTIONS FOR DROSOPHILA MONTANA COURTSHIP SONG AND A TEST OF THE TEMPERATURE COUPLING HYPOTHESIS. Evolution; International Journal of Organic Evolution, 2007, 55, 721-727.	2.3	12
104	Comparison of genetic diversity at microsatellite loci in near-extinct and non-endangered species of Mexican goodeine fishes and prediction of cross-amplification within the family. Journal of Fish Biology, 2007, 70, 16-32.	1.6	10
105	Parallel evolution? Microsatellite variation of recently isolated marine and freshwater three-spined stickleback. Journal of Fish Biology, 2007, 70, 125-131.	1.6	31
106	Morphological and genetic divergence of intralacustrine stickleback morphs in Iceland: a case for selective differentiation?. Journal of Evolutionary Biology, 2007, 20, 603-616.	1.7	20
107	Sex and differentiation: population genetic divergence and sexual dimorphism in Mexican goodeid fish. Journal of Evolutionary Biology, 2007, 20, 2048-2055.	1.7	42
108	Postglacial intra″acustrine divergence of Icelandic threespine stickleback morphs in three neovolcanic lakes. Journal of Evolutionary Biology, 2007, 20, 1870-1881.	1.7	33

#	Article	IF	CITATIONS
109	Dispersal differences predict population genetic structure in Mormon crickets. Molecular Ecology, 2007, 16, 2079-2089.	3.9	23
110	GENETICS OF INCIPIENT SPECIATION INDROSOPHILA MOJAVENSIS. I. MALE COURTSHIP SONG, MATING SUCCESS, AND GENOTYPE X ENVIRONMENT INTERACTIONS. Evolution; International Journal of Organic Evolution, 2007, 61, 1106-1119.	2.3	58
111	MALE COURTSHIP SONG AND FEMALE PREFERENCE VARIATION BETWEEN PHYLOGEOGRAPHICALLY DISTINCT POPULATIONS OF DROSOPHILA MONTANA. Evolution; International Journal of Organic Evolution, 2007, 61, 1481-1488.	2.3	51
112	Multiple differences in calling songs and other traits between solitary and gregarious Mormon crickets from allopatric mtDNA clades. BMC Evolutionary Biology, 2007, 7, 5.	3.2	15
113	Positive assortative mating between recently described sympatric morphs of Icelandic sticklebacks. Biology Letters, 2006, 2, 250-252.	2.3	51
114	New microsatellite loci for the European bushcricket, Ephippiger ephippiger (Orthoptera:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 542 Td (
115	Phylogeographic information systems: putting the geography into phylogeography. Journal of Biogeography, 2006, 33, 1851-1865.	3.0	107
116	An unusual phylogeography in the bushcricket Ephippiger ephippiger from Southern France. Heredity, 2006, 97, 398-408.	2.6	28
117	Inheritance of courtship song variation among geographically isolated populations of Drosophila mojavensis. Animal Behaviour, 2006, 71, 1205-1214.	1.9	30
118	Development and characterization of microsatellite loci in Mormon crickets (Anabrus simplex,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 382
119	Patterns of speciation in endemic Mexican Goodeid fish: sexual conflict or early radiation?. Journal of Evolutionary Biology, 2005, 18, 922-929.	1.7	31
120	Evolution of Species: Explosive speciation in a cricket. Heredity, 2005, 95, 5-6.	2.6	3
121	Are solitary and gregarious Mormon crickets (Anabrus simplex, Orthoptera, Tettigoniidae) genetically distinct?. Heredity, 2005, 95, 166-173.	2.6	21
122	Variation, but no covariance, in female preference functions and male song in a natural population of Drosophila montana. Animal Behaviour, 2005, 70, 849-854.	1.9	63
123	Experimental Manipulation of Sexual Selection and the Evolution of Courtship Song in Drosophila pseudoobscura. Behavior Genetics, 2005, 35, 245-255.	2.1	64
124	Quantitative Trait Loci for Cuticular Hydrocarbons Associated With Sexual Isolation Between Drosophila simulans and D. sechellia. Genetics, 2005, 171, 1789-1798.	2.9	57
125	Polyandry in the ectoparasitic copepod Lepeophtheirus salmonis despite complex precopulatory and postcopulatory mate-guarding. Marine Ecology - Progress Series, 2005, 303, 225-234.	1.9	34
126	Do Quantitative Trait Loci (QTL) for a Courtship Song Difference Between <i>Drosophila simulans </i> and <i>D. sechellia </i> Coincide With Candidate Genes and Intraspecific QTL?. Genetics, 2004, 166, 1303-1311.	2.9	73

#	Article	IF	CITATIONS
127	SEXUAL SELECTION IN THE GIFT-GIVING DANCE FLY, RHAMPHOMYIA SULCATA, FAVORS SMALL MALES CARRYING SMALL GIFTS. Evolution; International Journal of Organic Evolution, 2004, 58, 1763.	2.3	1
128	SEXUAL SELECTION IN THE GIFT-GIVING DANCE FLY, RHAMPHOMYIA SULCATA, FAVORS SMALL MALES CARRYING SMALL GIFTS. Evolution; International Journal of Organic Evolution, 2004, 58, 1763-1772.	2.3	43
129	Evolutionary genetics: Gene replacement and the genetics of speciation. Heredity, 2004, 93, 1-2.	2.6	14
130	Male age, mating status and nuptial gift quality in a bushcricket. Animal Behaviour, 2004, 67, 1059-1065.	1.9	103
131	Sperm competition and the level of polyandry in a bushcricket with large nuptial gifts. Behavioral Ecology and Sociobiology, 2004, 57, 149-154.	1.4	21
132	Molecular phylogeny of the livebearing Goodeidae (Cyprinodontiformes). Molecular Phylogenetics and Evolution, 2004, 30, 527-544.	2.7	106
133	Population genetic differentiation of sea lice (Lepeophtheirus salmonis) parasitic on Atlantic and Pacific salmonids: analyses of microsatellite DNA variation among wild and farmed hosts. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 1176-1190.	1.4	61
134	Nonlinear and correlational sexual selection on †honest†female ornamentation. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2159-2165.	2.6	108
135	Genetic Tools for Studying Adaptation and the Evolution of Behavior. American Naturalist, 2002, 160, S143-S159.	2.1	113
136	Quantitative trait loci affecting a courtship signal in Drosophila melanogaster. Heredity, 2002, 89, 1-6.	2.6	74
137	Chronic speciation in periodical cicadas. Trends in Ecology and Evolution, 2001, 16, 59-61.	8.7	13
138	Deception (mimicry): an integral component of sexual signals. Trends in Ecology and Evolution, 2001, 16, 228.	8.7	1
139	Assortative mating and the genic view of speciation. Journal of Evolutionary Biology, 2001, 14, 878-879.	1.7	17
140	Searching for speciation genes. Nature, 2001, 412, 31-33.	27.8	18
141	Variable maternal control of facultative egg diapause in the bushcricketEphippiger ephippiger. Ecological Entomology, 2001, 26, 143-147.	2.2	38
142	CHARACTERIZATION OF FEMALE PREFERENCE FUNCTIONS FOR DROSOPHILA MONTANA COURTSHIP SONG AND A TEST OF THE TEMPERATURE COUPLING HYPOTHESIS. Evolution; International Journal of Organic Evolution, 2001, 55, 721.	2.3	72
143	A Geographical Information Science (GISc) Approach to Exploring Variation in The Bush Cricket Ephippiger ephippiger., 2001,, 193-211.		2
144	The courtship song of African Drosophila melanogaster. Journal of Evolutionary Biology, 2000, 13, 143-150.	1.7	47

#	Article	IF	CITATIONS
145	Inferring the patterns and causes of geographic variation in Ephippiger ephippiger (Orthoptera,) Tj ETQq1 1 0.784 2000, 71, 269-295.	1314 rgBT 1.6	/Overlock 1 19
146	Title is missing!. Hydrobiologia, 2000, 429, 181-196.	2.0	49
147	The inheritance of female preference functions in a mate recognition system. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 327-332.	2.6	74
148	Female secondary sexual characteristics: appearances might be deceptive. Trends in Ecology and Evolution, 2000, 15, 436-438.	8.7	10
149	Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D.melanogaster song. Animal Behaviour, 1999, 58, 649-657.	1.9	206
150	Behavioral Components of Sex Role Reversal in the Tettigoniid Bushcricket Ephippiger ephippiger. Journal of Insect Behavior, 1998, 11, 481-491.	0.7	25
151	Female preference for fly song: playback experiments confirm the targets of sexual selection. Animal Behaviour, 1998, 56, 713-717.	1.9	83
152	Hybrids and hybrid zones: Reply from M.G. Ritchie and N.H. Barton. Trends in Ecology and Evolution, 1998, 13, 282-283.	8.7	0
153	Evolution of Courtship Song and Reproductive Isolation in the Drosophila willistoni Species Complex: Do Sexual Signals Diverge the Most Quickly?. Evolution; International Journal of Organic Evolution, 1998, 52, 1493.	2.3	72
154	EVOLUTION OF COURTSHIP SONG AND REPRODUCTIVE ISOLATION IN THE <i>DROSOPHILA WILLISTONI</i> SPECIES COMPLEX: DO SEXUAL SIGNALS DIVERGE THE MOST QUICKLY?. Evolution; International Journal of Organic Evolution, 1998, 52, 1493-1500.	2.3	91
155	Variability of the bushcricket Ephippiger ephippiger: RAPDs and song races. Heredity, 1997, 79, 286-294.	2.6	12
156	Genetic differentiation of populations of the copepod sea louse Lepeophtheirus salmonis (KrÃ,yer) ectoparasitic on wild and farmed salmonids around the coasts of Scotland: Evidence from RAPD markers. Journal of Experimental Marine Biology and Ecology, 1997, 210, 251-274.	1.5	36
157	The shape of female mating preferences. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14628-14631.	7.1	200
158	Artificial selection for a courtship signal inDrosophila melanogaster. Animal Behaviour, 1996, 52, 603-611.	1.9	47
159	Polygenic control of a mating signal in Drosophila. Heredity, 1996, 77, 378-382.	2.6	32
160	Rapid evolution of courtship song pattern in Drosophila willistoni sibling species. Journal of Evolutionary Biology, 1995, 8, 463-479.	1.7	91
161	Genetic variability of the interpulse interval of courtship song among some European populations of Drosophila melanogaster. Heredity, 1994, 72, 459-464.	2.6	45
162	Reproductive isolation and the period gene of Drosophila. Molecular Ecology, 1994, 3, 595-599.	3.9	22

#	Article	IF	Citations
163	Genetic variability of courtship song in a population of Drosophila melanogaster. Animal Behaviour, 1994, 48, 425-434.	1.9	48
164	The ultrasonic mating signal of the male lesser wax moth. Physiological Entomology, 1994, 19, 367-372.	1.5	21
165	Female song preference and theperiod gene inDrosophila. Behavior Genetics, 1993, 23, 85-90.	2.1	49
166	Genetic and Molecular Analysis of the Love Song Preferences of Drosophila Females. American Zoologist, 1992, 32, 31-39.	0.7	18
167	Broad-scale mapping of a hybrid zone between subspecies of Chorthippus parallelus (Orthoptera:) Tj ETQq1 1 0.:	784314 rg	gBT ₁ /Overlock
168	Setbacks in the search for mate-preference genes. Trends in Ecology and Evolution, 1992, 7, 328-329.	8.7	32
169	Variation in male song and female preference within a population of Ephippiger ephippiger (Orthoptera: Tettigoniidae). Animal Behaviour, 1992, 43, 845-855.	1.9	35
170	Behavioral coupling in tettigoniid hybrids (Orthoptera). Behavior Genetics, 1992, 22, 369-379.	2.1	24
171	Fitness consequences of potential assortative mating inside and outside a hybrid zone in Chorthippus parallelus (Orthoptera: Acrididae): implications for reinforcement and sexual selection theory. Biological Journal of the Linnean Society, 1992, 45, 219-234.	1.6	22
172	Genetic and Molecular Analysis of Ultradian Rhythms in Drosophila. , 1992, , 89-104.		4
173	Female preference for †song races†of Ephippiger ephippiger (Orthoptera: Tettigoniidae). Animal Behaviour, 1991, 42, 518-520.	1.9	44
174	Variation in female mate preference across a grasshopper hybrid zone. Journal of Evolutionary Biology, 1991, 4, 227-240.	1.7	55
175	Genetics, Speciation, and the Founder Principle. Based on a Symposium Held in Honolulu, Hawaii, June 5-7, 1985.Luther Val Giddings, Kenneth Y. Kaneshiro, Wyatt W. Anderson. Quarterly Review of Biology, 1991, 66, 78-78.	0.1	0
176	Are differences in song responsible for assortative mating between subspecies of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae)?. Animal Behaviour, 1990, 39, 685-691.	1.9	39
177	Assortative mating across a hybrid zone in Chorthippus parallelus (Orthoptera: Acrididae). Journal of Evolutionary Biology, 1989, 2, 339-352.	1.7	49
178	Genetic coupling in mate recognition systems: what is the evidence?. Biological Journal of the Linnean Society, 1989, 37, 237-246.	1.6	123
179	1868 and all that for Magicicada. Nature, 1988, 336, 206-207.	27.8	2

Causation, fitness effects and morphology of macropterism in Chorthippus parallelus (Orthoptera:) Tj ETQq $0\ 0\ 0\ rg_{2.2}^{BT}$ /Overlock $10\ Tf\ 50\ rg_{2.2}^{BT}$

11

180