
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1395488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of self-field critical current density by several-tens-MeV ion irradiation in YBa ₂ Cu ₃ O ₇ films prepared by fluorine-free metal-organic deposition. Japanese Journal of Applied Physics, 2022, 61, 043001.	1.5	7
2	Origin of simultaneous enhancement of work function and carrier concentration in In2O3 films by excimer-laser irradiation. Applied Physics Letters, 2021, 118, .	3.3	5
3	Control of the oxygen deficiency and work function of SrFeO3â [~] î [~] thin films by excimer laser-assisted metal organic decomposition. CrystEngComm, 2020, 22, 4685-4691.	2.6	6
4	Excimer laser annealing method for achieving low electrical resistivity and high work function in transparent conductive amorphous In2O3:Zn films on a polyethylene terephthalate substrate. Thin Solid Films, 2020, 698, 137867.	1.8	8
5	Simultaneous realization of infrared-light switching and high visible-light transmittance in extremely thin VO2 films grown on ZnO-nanorods buffered glasses. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	3
6	Texture and phase control of magnetron-sputtered VO2 thin films with an Al-doped ZnO seed layer using topotactic oxidization. Surface and Coatings Technology, 2020, 394, 125769.	4.8	3
7	Infrared-light switching in highly oriented VO2 films on ZnO-buffered glasses with controlled phase transition temperatures. Solar Energy Materials and Solar Cells, 2019, 191, 9-14.	6.2	17
8	Development of Flexible RuO ₂ Film by Excimer Laser Metal Organic Deposition (ELAMOD). IEEJ Transactions on Electronics, Information and Systems, 2019, 139, 640-643.	0.2	0
9	Development of Flexible Electro Ceramics Films Prepared by Photo-Assisted Metal Organic Deposition (MOD) and its Electrical Component Application. Journal of Japan Institute of Electronics Packaging, 2019, 22, 485-489.	0.1	0
10	Low temperature vanadium oxide thin film sintering by thermal and excimer-laser-assisted Metal-Organic Deposition (MOD). Ceramics International, 2018, 44, S26-S29.	4.8	6
11	Origin of the dimpled critical-current-versus-magnetic-field-angle relation in YBa2Cu3O7films studied using sub-MeV ion irradiation. Superconductor Science and Technology, 2016, 29, 065002.	3.5	6
12	Enhancement of critical current density in YBa2Cu3O7 films using a semiconductor ion implanter. Journal of Applied Physics, 2015, 117, .	2.5	20
13	Preparation of superconducting films by metal organic deposition. Synthesiology, 2015, 7, 239-250.	0.2	1
14	Preparation of superconducting films by metal organic deposition. Synthesiology, 2014, 7, 247-257.	0.2	2
15	Influence of middle-energy ion-irradiation on the flux pinning properties of YBCO films: Comparison between different synthesis methods. Journal of Physics: Conference Series, 2014, 507, 022019.	0.4	7
16	Large-area YBCO films with low-Rs prepared by excimer-laser-assisted MOD (ELAMOD) on sapphire substrates. Physica C: Superconductivity and Its Applications, 2013, 484, 183-185.	1.2	1
17	Enhanced Jc of MOD-YBCO Films by Modifying Surface States of CeO2 Buffer Layers on Sapphire Substrates. Physics Procedia, 2013, 45, 177-180.	1.2	6
18	Dimpling in critical current density vs. magnetic field angle in YBa2Cu3O7 films irradiated with 3-MeV gold ions. Journal of Applied Physics, 2013, 114, 233911.	2.5	13

#	Article	IF	CITATIONS
19	4-fold enhancement in the critical current density of YBa2Cu3O7 films by practical ion irradiation. Applied Physics Letters, 2012, 101, .	3.3	39
20	Preparation of YBa\$_{2}\$Cu\$_{3}\$O\$_{7-delta}\$ Patterned Film Using Metal Organic Deposition with Electron Beam Irradiation. Japanese Journal of Applied Physics, 2012, 51, 113101.	1.5	0
21	Partial Substitution of Rare-Earth Ions for Yttrium Through Multi-Layer Precursors in the YBa2Cu3O7 Films Grown by Fluorine-Free Metal Organic Deposition. Physics Procedia, 2012, 36, 1643-1648.	1.2	4
22	Enhanced flux pinning in MOD YBa2Cu3O7â^îffilms by ion milling through anodic alumina templates. Superconductor Science and Technology, 2012, 25, 065005.	3.5	9
23	Enhancement of in-field critical current density by irradiation of MeV-energy ions in YBCO films prepared by fluorine-free metal-organic deposition. Physics Procedia, 2012, 27, 276-279.	1.2	1
24	Temperature dependence of magnetic-field angle dependent critical current density and the flux pinning in YBa2Cu3O7 thin films. Physica C: Superconductivity and Its Applications, 2012, 478, 19-28.	1.2	20
25	Preparation of YBa ₂ Cu ₃ O _{7-Î′} Patterned Film Using Metal Organic Deposition with Electron Beam Irradiation. Japanese Journal of Applied Physics, 2012, 51, 113101.	1.5	1
26	Preparation of Y123 Thick Films by Fluorine-Free MOD Using a Novel Solution. IEEE Transactions on Applied Superconductivity, 2011, 21, 2775-2778.	1.7	7
27	Thickness Dependence of the Critical-Current Density and its Relation to Near-Interface Crystal Imperfections in Fluorine-Free-MOD YBCO Films. IEEE Transactions on Applied Superconductivity, 2011, 21, 2933-2936.	1.7	17
28	Increase of achievable film thickness by UV-lamp irradiation in a fluorine-free metal-organic deposition process of YBa2Cu3O7. Thin Solid Films, 2011, 519, 8063-8065.	1.8	11
29	Homoepitaxial growth of MOD-YBCO thick films on evaporated and MOD templates. Physica C: Superconductivity and Its Applications, 2011, 471, 956-959.	1.2	2
30	Reduced crystallization time of YBCO in a fluorine-free MOD process using uv-lamp irradiation. Physica C: Superconductivity and Its Applications, 2011, 471, 960-962.	1.2	11
31	Study of Superconductor Recovery Time Characteristics and High-Speed Reclosing of Electromagnetic Repulsion Switch. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2011, 175, 12-19.	0.4	2
32	Environment-resistive coating for the thin-film-based superconducting fault-current limiter Ag/Au–Ag/YBa2Cu3O7/CeO2/Al2O3. Physica C: Superconductivity and Its Applications, 2010, 470, 221-224.	1.2	2
33	Measurement of Jc and n-value for (Y1â^'xGdx)Ba2Cu3Oy films prepared by MOD. Physica C: Superconductivity and Its Applications, 2010, 470, 1449-1451.	1.2	3
34	Strong flux pinning due to dislocations associated with stacking faults in Y Ba ₂ Cu ₃ O _{7 â^' Î} thin films prepared by fluorine-free metal organic deposition. Superconductor Science and Technology, 2010, 23, 105004.	3.5	36
35	Lattice template effect on epitaxial γ-Fe2O3 films prepared by metal organic deposition. Journal of Applied Physics, 2010, 107, 053908.	2.5	8
36	Preparation of YBa2Cu3O7-Î′Micropatterns Using Metal–Organic Deposition with Electron Beam. Japanese Journal of Applied Physics, 2010, 49, 081101.	1.5	3

#	Article	IF	CITATIONS
37	Cerium Oxide Buffer Layers on Perovskite-Type Substrates for Preparation of \$c\$-Axis-Oriented \${m YBa}_{2}{m Cu}_{3}{m O}_{7}\$ Films by Fluorine-Free Metalorganic Deposition. IEEE Transactions on Applied Superconductivity, 2009, 19, 3463-3466.	1.7	1
38	Methods to Increase Current Capacity of Superconducting Thin-Film Fault Current Limiter Using Au-Ag Alloy Shunt Layers. IEEE Transactions on Applied Superconductivity, 2009, 19, 1863-1867.	1.7	4
39	500 V/200 A fault current limiter modules made of large-area MOD-YBa ₂ Cu ₃ O ₇ thin films with high-resistivity Au–Ag alloy shunt layers. Superconductor Science and Technology, 2009, 22, 125007.	3.5	7
40	Development of a superconducting fault current limiter using various high-speed circuit breakers. IET Electric Power Applications, 2009, 3, 363.	1.8	28
41	Line-beam scan irradiation for preparation of YBCO films with high-Jc by excimer-laser-assisted MOD (ELAMOD). Physica C: Superconductivity and Its Applications, 2009, 469, 1541-1544.	1.2	2
42	Applications of DC Breakers and Concepts for Superconducting Fault-Current Limiter for a DC Distribution Network. IEEE Transactions on Applied Superconductivity, 2009, 19, 3658-3664.	1.7	45
43	Effects of backside irradiation on Jc properties of YBCO films prepared by excimer-laser-assisted MOD (ELAMOD). Physica C: Superconductivity and Its Applications, 2008, 468, 1873-1875.	1.2	1
44	Operation of superconducting fault current limiter using vacuum interrupter driven by electromagnetic repulsion force for commutating switch. Electrical Engineering in Japan (English) Tj ETQq0 0 0	rgBƊ / €ver	loc k 10 Tf 50
45	Crystallization behavior of Y123 films on CeO2-buffered YSZ substrates by fluorine-free metal–organic deposition. Physica C: Superconductivity and Its Applications, 2008, 468, 1559-1562.	1.2	8
46	Normal zone propagation in superconducting thin-film fault current limiting elements with Au-Ag alloy shunt layers. Journal of Physics: Conference Series, 2008, 97, 012031.	0.4	4
47	Preparation and Characterization of Epitaxial VO2Films on Sapphire Using Postepitaxial Topotaxy Route via Epitaxial V2O3Films. Japanese Journal of Applied Physics, 2008, 47, 1022-1027.	1.5	37
48	Operating characteristics of superconducting fault current limiter using 24kV vacuum interrupter driven by electromagnetic repulsion switch. Journal of Physics: Conference Series, 2008, 97, 012068.	0.4	2
49	Distribution of \$J_{m c}\$ in Rectangular-Shaped YBCO Films Prepared by MOD Using Various Coating Methods. IEEE Transactions on Applied Superconductivity, 2007, 17, 3491-3494.	1.7	4
50	Microstructure of Epitaxial Y123 Films on \${m CeO}_{2}\$-Buffered YSZ Prepared by Fluorine-Free MOD. IEEE Transactions on Applied Superconductivity, 2007, 17, 3495-3498.	1.7	9
51	Epitaxial Growth of La0.7Ba0.3MnO3Thin Films on SrTiO3and LaAlO3Substrates by Metal-Organic Deposition. Japanese Journal of Applied Physics, 2007, 46, 2530-2533.	1.5	4
52	Current Limiting Properties of MOD-YBCO Thin Films Stabilized With High-Resistivity Alloy Shunt Layer. IEEE Transactions on Applied Superconductivity, 2007, 17, 3479-3482.	1.7	8
53	Preparation of Epitaxial YBCO Films by a Novel Excimer-Laser-Assisted MOD. IEEE Transactions on Applied Superconductivity, 2007, 17, 3612-3615.	1.7	14
54	Low-temperature growth of epitaxial PZT/LSMO/LAO film by excimer laser-assisted metal organic deposition (ELAMOD). Journal of Physics: Conference Series, 2007, 59, 218-223.	0.4	0

#	Article	IF	CITATIONS
55	Study of kV Class Current Limiting Unit With YBCO Thin Films. IEEE Transactions on Applied Superconductivity, 2007, 17, 1986-1989.	1.7	6
56	Preparation of the La0.8Sr0.2MnO3 films on STO and LAO substrates by excimer laser-assisted metal organic deposition using the KrF laser. Applied Surface Science, 2007, 253, 6504-6507.	6.1	28
57	Preparation of YBCO films by an excimer-laser-assisted MOD by scanning irradiation. Physica C: Superconductivity and Its Applications, 2007, 463-465, 891-894.	1.2	8
58	Preparation of epitaxial YBa2Cu3O7â^'y films on CeO2-buffered yttria-stabilized zirconia substrates by fluorine-free metalorganic deposition. Physica C: Superconductivity and Its Applications, 2007, 458, 29-33.	1.2	26
59	Preparation of large-size Y123 films on CeO2-buffered sapphire substrates by MOD using a low-cost vacuum technique. Physica C: Superconductivity and Its Applications, 2007, 463-465, 549-553.	1.2	7
60	Study of Superconducting Fault Current Limiter Using Vacuum Interrupter Driven by Electromagnetic Repulsion Force for Commutating Switch. IEEE Transactions on Applied Superconductivity, 2006, 16, 1999-2004.	1.7	57
61	Structure analysis of mutually incommensurate composite crystal (Ca0.5Y0.5)0.80CuO2. Journal of Alloys and Compounds, 2006, 408-412, 1226-1229.	5.5	2
62	Microstructural observations of epitaxial Y123 films on CeO2-buffered sapphire by metal organic deposition. Journal of Physics: Conference Series, 2006, 43, 369-372.	0.4	4
63	Rectangular (1 cm ×12 cm) YBCO films prepared by MOD using spin-coating and wire-bar coating. Journal of Physics: Conference Series, 2006, 43, 366-368.	0.4	2
64	Characteristic of YBCO Thin Film for Current Limiting Device. Journal of Physics: Conference Series, 2006, 43, 905-908.	0.4	0
65	The structural representation and properties of mutually incommensurate composite crystal (BiS)xTS2(T = Ti, V, Nb and Ta). Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2852-2855.	1.8	1
66	Temperature dependence of atomic modulation in the incommensurate composite crystal structure of (Sr2Cu2O3)0.70CuO2, â€~Sr14Cu24O41'. Physica C: Superconductivity and Its Applications, 2006, 445-448, 107-110.	1.2	3
67	Preparation of high-Jc Y123 films on CeO2-buffered sapphire substrates by MOD using a low-cost vacuum technique. Physica C: Superconductivity and Its Applications, 2006, 445-448, 603-607.	1.2	6
68	Surface resistances of 5-cm-diameter YBCO films prepared by MOD for microwave applications. Physica C: Superconductivity and Its Applications, 2006, 445-448, 823-827.	1.2	11
69	Substrate effect on the temperature coefficient of resistance of La0.7Ca0.3MnO3 thin films prepared by metal organic deposition. Journal of Electroceramics, 2006, 16, 527-532.	2.0	14
70	Application study of a high-temperature superconducting fault current limiter for electric power system. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2006, 155, 20-29.	0.4	4
71	Structural aspect of high-JcMOD-YBCO films prepared on large area CeO2-buffered YSZ substrates. Journal of Physics: Conference Series, 2006, 43, 349-352.	0.4	13
72	Fabrication of Double-Sided YBa2Cu3O7 Films on CeO2-Buffered Sapphire Substrates by MOD Process. IEICE Transactions on Electronics, 2006, E89-C, 182-185.	0.6	5

#	Article	IF	CITATIONS
73	Preparation of Double-Sided YBCO Films on LaAlO3 by MOD Using Commercially Available Coating Solution. IEICE Transactions on Electronics, 2006, E89-C, 186-190.	0.6	7
74	Epitaxial growth of La0.7Ca0.3MnO3 thin films by KrF excimer laser assisted metal organic deposition process. Applied Surface Science, 2005, 247, 89-94.	6.1	15
75	Critical current density and microwave surface resistance of 5-cm-diameter YBCO films on LaAlO3 substrates prepared by MOD using an infrared image furnace. Physica C: Superconductivity and Its Applications, 2005, 417, 98-102.	1.2	15
76	Role of atomic modulation in the incommensurate composite crystal structure of (Sr2Cu2O3)0.70CuO2, "Sr14Cu24O41―with two-legged ladder and one-dimensional chain. Physica C: Superconductivity and Its Applications, 2005, 426-431, 416-420.	1.2	1
77	Preparation of tin oxide films on various substrates by excimer laser metal organic deposition. Applied Surface Science, 2005, 247, 145-150.	6.1	19
78	Electrical Properties of La0.7Ca0.3MnO3Thin Films Obtained by Metal-Organic Deposition (MOD) using Excimer Laser and Thermal Annealing. Japanese Journal of Applied Physics, 2005, 44, 5129-5132.	1.5	9
79	Preparation of High-JcYBa2Cu3O7-yFilms on CeO2-Buffered Yttria-Stabilized Zirconia Substrates by Fluorine-Free Metalorganic Deposition. Japanese Journal of Applied Physics, 2005, 44, 4914-4918.	1.5	17
80	Metal Organic Deposition of Epitaxial Y123 Films Using a Low-Cost Vacuum Technique. IEEE Transactions on Applied Superconductivity, 2005, 15, 2927-2930.	1.7	13
81	Preparation of <tex>\$rm CeO_2\$</tex> -Buffer Layers for Large-Area MOD-YBCO Films <tex>\$(10times30 rm cm^2)\$</tex> With High- <tex>\$J_c\$</tex> . IEEE Transactions on Applied Superconductivity, 2005, 15, 2699-2702.	1.7	20
82	Distribution of Inductive <tex>\$J_c\$</tex> in Two-Dimensional Large-Size YBCO Films Prepared by Fluorine-Free MOD on <tex>\$rm CeO_2\$</tex> -Buffered Sapphire. IEEE Transactions on Applied Superconductivity, 2005, 15, 2923-2926.	1.7	14
83	Microstructural and electrical properties of La0.7Ca0.3MnO3 thin films grown on SrTiO3 and LaAlO3 substrates using metal-organic deposition. Journal of Applied Physics, 2005, 98, 013507.	2.5	35
84	Application Study of a High Temperature Superconducting Fault Current Limiter for Electric Power System. IEEJ Transactions on Power and Energy, 2005, 125, 103-110.	0.2	5
85	Two-dimensional large-size Y Ba2Cu3O7films (30 × 10 cm2) on CeO2-buffered sapphire by a coating pyrolysis process. Superconductor Science and Technology, 2004, 17, 354-357.	3.5	9
86	Large Temperature Coefficient of Resistance in La0.7Ca0.3MnO3Thin Films Obtained by Metal Organic Deposition Process. Japanese Journal of Applied Physics, 2004, 43, L1054-L1056.	1.5	13
87	Low-temperature growth of SnO2 film prepared by XeCl excimer laser MOD process. Applied Physics A: Materials Science and Processing, 2004, 79, 1541-1544.	2.3	11
88	Low temperature growth of epitaxial complex oxide films by an excimer laser MOD process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 131-135.	3.5	15
89	Preparation of high-Jc large-size YBCO films (30×10 cm2) by coating-pyrolysis process on CeO2-buffered sapphire. Physica C: Superconductivity and Its Applications, 2004, 412-414, 896-899.	1.2	43
90	Cerium oxide (CeO2) buffer layers for preparation of high-Jc YBCO films on large-area sapphire substrates (30 cm×10 cm) by coating pyrolysis. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1326-1330.	1.2	16

#	Article	IF	CITATIONS
91	Preparation, characterization and property of (BiS)xTS2-type ternary chalcogenides (T=V, Nb and Ta) with layered composite crystal structure. Solid State Ionics, 2004, 172, 519-522.	2.7	3
92	Synthesis and Properties of Highly Conductive Thin Films as Buffer Layer from Sol-Gel Process. Journal of Sol-Gel Science and Technology, 2003, 26, 1049-1053.	2.4	10
93	Superspace group description of single composite crystal (Ca0.5Y0.5)0.80CuO2. Physica B: Condensed Matter, 2003, 329-333, 985-987.	2.7	0
94	Preparation of YBCO films on CeO2-buffered MgO substrates by coating pyrolysis. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1256-1260.	1.2	9
95	2-D large-size YBCO films on sapphire for FCL prepared by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2003, 392-396, 937-940.	1.2	15
96	Preparation of (001)- and (114)-oriented epitaxial thin films of Bi2VO5.5 by a coating pyrolysis process. Thin Solid Films, 2003, 425, 97-102.	1.8	6
97	Low temperature fabrication of epitaxial Yb123 films by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1281-1285.	1.2	0
98	Structural modulation, hole distribution, and hole-ordered structure of the incommensurate composite crystal(Sr2Cu2O3)0.70CuO2. Physical Review B, 2003, 68, .	3.2	26
99	Low Temperature Growth of Epitaxial La0.8Sr0.2MnO3Thin Films by an Excimer-Laser-Assisted Coating Pyrolysis Process. Japanese Journal of Applied Physics, 2003, 42, L956-L959.	1.5	37
100	Preparation and crystal structure of BaTiO3 thin film on LaAlO3 substrates by a coating-pyrolysis process. Materials Letters, 2002, 52, 169-172.	2.6	7
101	Preparation of (111)-Oriented Epitaxial Fe3â^'xO4 Films on α-Al2O3 (0001) Substrates by Coating-Pyrolysis Process Using Postepitaxial Topotaxy via (0001)-Oriented α-Fe2O3. Journal of Solid State Chemistry, 2002, 163, 239-247.	2.9	15
102	Preparation of YBa2Cu3O7â^'x/EuAlO3 multilayer films on α-Al2O3 substrates by all-coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2002, 382, 269-275.	1.2	2
103	Effect of Bi doping on the modulated composite structure of (Sr2Cu2O3)0.70CuO2, "Sr14Cu24O41― Physica C: Superconductivity and Its Applications, 2002, 378-381, 131-136.	1.2	0
104	Preparation of YBa2Cu3O7â^'y films by coating pyrolysis using a novel fluorine-contained complex solution. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1017-1023.	1.2	1
105	Preparation of Y123 films on REAIO3-buffered off-cut substrates of R-plane sapphire. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1227-1231.	1.2	1
106	Characterization of 50-mm-diameter Y123 films prepared by a coating-pyrolysis process using an infrared image furnace. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1236-1240.	1.2	13
107	Effect of substrates on epitaxial PZT films by a coating photolysis process. Materials Science in Semiconductor Processing, 2002, 5, 207-210.	4.0	32
108	Low temperature growth of metal oxide thin films by metallorganic laser photolysis. Applied Surface Science, 2002, 186, 173-178.	6.1	57

#	Article	IF	CITATIONS
109	Preparation of epitaxial Pb(Zr,Ti)O3 thin films using coating photolysis process. Applied Surface Science, 2002, 197-198, 398-401.	6.1	10
110	Growth conditions, structural and magnetic properties of M/Fe3O4/I (M=Al, Ag and I=Al2O3, MgO) multilayers. Journal of Magnetism and Magnetic Materials, 2002, 247, 1-5.	2.3	14
111	Characterization of tin-doped indium oxide films prepared by coating photolysis process. Applied Surface Science, 2002, 197-198, 512-515.	6.1	15
112	Characterization of epitaxial thin films of Bi2VO5.5 on La-doped SrTiO3 substrates prepared by coating-pyrolysis process. Thin Solid Films, 2002, 422, 73-79.	1.8	5
113	Effect of surface treatment of substrates on epitaxial α-Fe2O3 films by coating-pyrolysis process. Thin Solid Films, 2001, 391, 157-161.	1.8	2
114	Superspace group description of modulated composite crystal (Sr2Cu2O3)0.70CuO2, "Sr14Cu24O41― with two-legged ladder and 1D chain. Physica C: Superconductivity and Its Applications, 2001, 357-360, 384-387.	1.2	1
115	Preparation of 2-inch-diameter double-sided YBa2Cu3O7 films by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1346-1349.	1.2	22
116	Preparation of double-sided epitaxial Yb124 films by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1350-1352.	1.2	0
117	Tc enhancement by partial substitution of Ca in superconducting YbBa2Cu4O8 epitaxial films prepared by coating-pyrolysis process. Journal of Crystal Growth, 2001, 229, 365-368.	1.5	1
118	Modulated structure analysis of composite crystal (Sr2Cu2O3)0.70CuO2, "Sr14Cu24O41―with two-legged ladder and one-dimensional chain. Ferroelectrics, 2001, 250, 19-22.	0.6	1
119	Preparation of Epitaxial YBa2Cu3O7-y/CeO2Multilayer Films on Yttria-stabilized Zirconia (100) by All-Coating-Pyrolysis Process. Japanese Journal of Applied Physics, 2001, 40, 4866-4869.	1.5	4
120	<title>Preparation of metal oxide thin films using coating photolysis process with ArF excimer
laser</title> . , 2000, , .		0
121	Effects of temperature and atmosphere on the epitaxial growth of hematite (α–Fe2O3) films on the R-, A- and C-planes of sapphire (α–Al2O3) by coating-pyrolysis process. Thin Solid Films, 2000, 365, 36-42.	1.8	8
122	Preparation of epitaxial V2O3 films on C-, A- and R-planes of α-Al2O3 substrates by coating-pyrolysis process. Thin Solid Films, 2000, 366, 294-301.	1.8	31
123	Epitaxial growth of NiO/Pd superlattices by reactive evaporation method. Thin Solid Films, 2000, 374, 21-26.	1.8	15
124	Ferroelectric Properties of (001)- and (106)-Oriented SrBi2Ta2O9 Epitaxial Thin Films. Journal of Sol-Gel Science and Technology, 2000, 19, 549-552.	2.4	5
125	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 753-757.	2.4	3
126	Preparation of PbTiO3 Thin Films Using a Coating Photolysis Process with ArF Excimer Laser. Japanese Journal of Applied Physics, 2000, 39, L866-L868.	1.5	27

#	Article	IF	CITATIONS
127	Variation of orientation and morphology of epitaxial SrBi ₂ Ta ₂ O ₉ and SrBi ₂ Nb ₂ O ₉ thin films via the coating-pyrolysis process. Journal of Materials Research, 2000, 15, 783-792.	2.6	9
128	Preparation of YBCO Films by CP-Process for HTS Microwave Filters. , 2000, , 927-929.		3
129	X-Ray Diffraction Studies of Epitaxial La0.5Sr0.5CoO3Thin Films Prepared by the Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1999, 38, 6489-6490.	1.5	5
130	Direct Conversion of Titanium Alkoxide into Crystallized TiO2 (rutile) Using Coating Photolysis Process with ArF Excimer Laser. Japanese Journal of Applied Physics, 1999, 38, L823-L825.	1.5	43
131	Epitaxial Growth of Bi4Ti3O12Thin Films on LaAlO3(012) and MgO(100) by Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1999, 38, 219-220.	1.5	8
132	Preparation of epitaxial SrBi ₂ Nb ₂ O ₉ and SrBi ₂ Ta ₂ O ₉ thin films by the coating-pyrolysis process. Journal of Materials Research, 1999, 14, 3090-3095.	2.6	11
133	Direct Conversion of Metal Acetylacetonates and Metal Organic Acid Salts into Metal Oxides Thin Films Using Coating Photolysis Process with An ArF Excimer Laser. Japanese Journal of Applied Physics, 1999, 38, L1112-L1114.	1.5	34
134	Dense and smooth epitaxial BaTiO3 thin films by the dipping-pyrolysis process. Journal of Materials Research, 1999, 14, 592-596.	2.6	12
135	Epitaxy of (106)-oriented SrBi2Ta2O9 and SrBi2Nb2O9 thin films. Thin Solid Films, 1999, 353, 52-55.	1.8	16
136	Effect of substrate material on the crystallinity and epitaxy of Pb(Zr,Ti)O3 thin films. Thin Solid Films, 1999, 347, 106-111.	1.8	43
137	Sr-substitution limit at 760–800°C in epitaxial Yb(Ba1â^'xSrx)2Cu4O8 films prepared by coating–pyrolysis process. Physica C: Superconductivity and Its Applications, 1999, 313, 313-318.	1.2	4
138	Title is missing!. Journal of Low Temperature Physics, 1999, 117, 801-805.	1.4	0
139	Topotaxy of Corundumâ€Type Tetramagnesium Diniobate and Ditantalate Layers on Rockâ€Saltâ€Type Magnesium Oxide Substrates. Journal of the American Ceramic Society, 1999, 82, 2061-2065.	3.8	9
140	Structural and magnetic properties of NiO/Pd multilayers. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 1191-1192.	2.3	9
141	Effects of substrate materials and annealing temperature on crystal structure and epitaxy of La0.7Sr0.3MnO3 films via dipping-pyrolysis process. Thin Solid Films, 1998, 323, 99-104.	1.8	17
142	Solid-state epitaxy of c-axis-oriented Yb124 films prepared by coating-pyrolysis process. Physica C: Superconductivity and Its Applications, 1998, 303, 53-56.	1.2	13
143	Low temperature solid-state epitaxy of LiNbO ₃ films by a dipping-pyrolysis process using Li-trifluoroacetate. Journal of Materials Research, 1998, 13, 834-836.	2.6	0
144	Preparation of epitaxial Fe3â^'xO4 films by dipping-pyrolysis process using COâ^'CO2 gas mixtures. Journal of Materials Research, 1998, 13, 935-938.	2.6	8

#	Article	IF	CITATIONS
145	Preparation of epitaxial La1â^'xSrxMnO3 films on SrTiO3(001) by dipping-pyrolysis process. Journal of Materials Research, 1997, 12, 541-545.	2.6	38
146	Preparation of EpitaxialPb(Zr,Ti)O3Thin Films on Nb-DopedSrTiO3(100) Substrates by Dipping-Pyrolysis Process. Japanese Journal of Applied Physics, 1997, 36, 5221-5225.	1.5	37
147	Preparation of Epitaxial BaTiO3 Thin Films by the Dipping-pyrolysis Process. Journal of Materials Research, 1997, 12, 1141-1144.	2.6	12
148	Preparation of Epitaxial and Polycrystalline La0.8Sr0.2MnO3 Films by Dipping-Pyrolysis Process. Materials Research Society Symposia Proceedings, 1997, 474, 253.	0.1	1
149	Preparation of Epitaxial Pb(Zr, Ti)O ₃ Thin Films on MgO (100) Substrates by Dipping-Pyrolysis Process. Journal of the Ceramic Society of Japan, 1997, 105, 952-956.	1.3	18
150	Effects of p(O2) and p(CO2) on epitaxial growth of BaTiO3 thin films on MgO(100) substrates by using metal organic acid salts. Thin Solid Films, 1997, 310, 199-202.	1.8	6
151	Carbon dioxide controlled annealing method for preparation of YBa2Cu3O7â^'y films by dipping-pyrolysis process. Physica C: Superconductivity and Its Applications, 1997, 276, 160-166.	1.2	5
152	Crystallization and in-plane alignment behavior of YBa ₂ Cu ₃ O _{7â^'<i>y</i>ki>s} films on MgO(001) prepared by the dipping-pyrolysis process. Journal of Materials Research, 1995, 10, 1635-1643.	2.6	58
153	Characterization of Epitaxial YBCO Films on SrTiO3(001) Prepared by Dipping-Pyrolysis Process. , 1995, , 625-628.		3