
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1394921/publications.pdf Version: 2024-02-01

IOSEDH M IEZ

#	Article	IF	CITATIONS
1	Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production <i>in planta</i> . Plant Journal, 2022, 109, 844-855.	5.7	4
2	Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites. Journal of Biological Chemistry, 2022, 298, 101550.	3.4	3
3	Connecting primary and specialized metabolism: Amino acid conjugation of phytohormones by GRETCHEN HAGEN 3 (CH3) acyl acid amido synthetases. Current Opinion in Plant Biology, 2022, 66, 102194.	7.1	15
4	Distribution and the evolutionary history of G-protein components in plant and algal lineages. Plant Physiology, 2022, 189, 1519-1535.	4.8	9
5	Chronologically modified androgen receptor in recurrent castration-resistant prostate cancer and its therapeutic targeting. Science Translational Medicine, 2022, 14, .	12.4	12
6	Point mutations that boost aromatic amino acid production and CO ₂ assimilation in plants. Science Advances, 2022, 8, .	10.3	7
7	Beyond X-rays: an overview of emerging structural biology methods. Emerging Topics in Life Sciences, 2021, 5, 221-230.	2.6	9
8	Protecting P-type plasma membrane H+-ATPases from ROS. Biochemical Journal, 2021, 478, 1511-1513.	3.7	1
9	Introduction to emerging technologies in plant science. Emerging Topics in Life Sciences, 2021, 5, 177-178.	2.6	2
10	The plant pathogen enzyme AldC is a longâ€chain aliphatic aldehyde dehydrogenase. FASEB Journal, 2021, 35, .	0.5	0
11	Structure-guided microbial targeting of antistaphylococcal prodrugs. ELife, 2021, 10, .	6.0	7
12	A natural singleâ€nucleotide polymorphism variant in <i>sulfite reductase</i> influences sulfur assimilation in maize. New Phytologist, 2021, 232, 692-704.	7.3	2
13	Structural Studies of Aliphatic Glucosinolate Chain-Elongation Enzymes. Antioxidants, 2021, 10, 1500.	5.1	5
14	Natural product biosynthesis: What's next? An introduction to the JBC Reviews Thematic Series. Journal of Biological Chemistry, 2020, 295, 335-336.	3.4	6
15	The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. Journal of Biological Chemistry, 2020, 295, 13914-13926.	3.4	4
16	Overexpression of ATP sulfurylase improves the sulfur amino acid content, enhances the accumulation of Bowman–Birk protease inhibitor and suppresses the accumulation of the β-subunit of β-conglycinin in soybean seeds. Scientific Reports, 2020, 10, 14989.	3.3	11
17	Plants in the real world: An introduction to the JBC Reviews thematic series. Journal of Biological Chemistry, 2020, 295, 15376-15377.	3.4	1
18	Structural and biochemical analysis of phosphoethanolamine methyltransferase from the pine wilt nematode Bursaphelenchus xylophilus. Molecular and Biochemical Parasitology, 2020, 238, 111291.	1.1	3

#	Article	IF	CITATIONS
19	Potent, specific MEPicides for treatment of zoonotic staphylococci. PLoS Pathogens, 2020, 16, e1007806.	4.7	12
20	Investigating the reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant pathogen <i>Pseudomonas syringae Pto</i> DC3000. Bioscience Reports, 2020, 40, .	2.4	15
21	Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. Molecular Cell, 2019, 76, 177-190.e5.	9.7	165
22	Bifunctional Substrate Activation via an Arginine Residue Drives Catalysis in Chalcone Isomerases. ACS Catalysis, 2019, 9, 8388-8396.	11.2	11
23	Molecular basis for branched steviol glucoside biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13131-13136.	7.1	41
24	Molecular Basis of the Evolution of Methylthioalkylmalate Synthase and the Diversity of Methionine-Derived Glucosinolates. Plant Cell, 2019, 31, 1633-1647.	6.6	37
25	Structural biology of plant sulfur metabolism: from sulfate to glutathione. Journal of Experimental Botany, 2019, 70, 4089-4103.	4.8	39
26	Plant nitrilase: a new job for an old enzyme. Biochemical Journal, 2019, 476, 1105-1107.	3.7	3
27	Brassicaceae-specific Gretchen Hagen 3 acyl acid amido synthetases conjugate amino acids to chorismate, a precursor of aromatic amino acids and salicylic acid. Journal of Biological Chemistry, 2019, 294, 16855-16864.	3.4	18
28	Arabidopsis thaliana GH3.15 acyl acid amido synthetase has a highly specific substrate preference for the auxin precursor indole-3-butyric acid. Journal of Biological Chemistry, 2018, 293, 4277-4288.	3.4	32
29	Antimalarial agents against both sexual and asexual parasites stages: structure-activity relationships and biological studies of the Malaria Box compound 1-[5-(4-bromo-2-chlorophenyl)furan-2-yl]-N-[(piperidin-4-yl)methyl]methanamine (MMV019918) and analogues. European Journal of Medicinal Chemistry, 2018, 150, 698-718.	5.5	27
30	Arabidopsis: the original plant chassis organism. Plant Cell Reports, 2018, 37, 1359-1366.	5.6	14
31	Review: The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. Plant Science, 2018, 272, 14-21.	3.6	61
32	Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Scientific Reports, 2018, 8, 2367.	3.3	10
33	Introduction to the Thematic Minireview Series: Green biological chemistry. Journal of Biological Chemistry, 2018, 293, 5016-5017.	3.4	0
34	Structural basis for substrate recognition and inhibition of prephenate aminotransferase from Arabidopsis. Plant Journal, 2018, 94, 304-314.	5.7	12
35	Beyond the Teaching Assistantship: CURE Leadership as a Training Platform for Future Faculty. Journal of Chemical Education, 2018, 95, 3-6.	2.3	16
36	Reaction Mechanism of Prephenate Dehydrogenase from the Alternative Tyrosine Biosynthesis Pathway in Plants. ChemBioChem, 2018, 19, 1132-1136.	2.6	5

#	Article	IF	CITATIONS
37	A multisubstrate reductase from Plantago major: structure-function in the short chain reductase superfamily. Scientific Reports, 2018, 8, 14796.	3.3	8
38	Modification of auxinic phenoxyalkanoic acid herbicides by the acyl acid amido synthetase GH3.15 from Arabidopsis. Journal of Biological Chemistry, 2018, 293, 17731-17738.	3.4	12
39	Improving societies' harassment policies. Science, 2018, 361, 984-985.	12.6	0
40	Plant metabolic engineering in the synthetic biology era: plant chassis selection. Plant Cell Reports, 2018, 37, 1357-1358.	5.6	9
41	Synthetic biology meets plant metabolism. Plant Science, 2018, 273, 1-2.	3.6	10
42	Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLoS Pathogens, 2018, 14, e1006811.	4.7	135
43	Structural and Biochemical Investigation of Plantâ€Nematode Interactions. FASEB Journal, 2018, 32, 526.1.	0.5	0
44	The small molecule JIB-04 disrupts O ₂ binding in the Fe-dependent histone demethylase KDM4A/JMJD2A. Chemical Communications, 2017, 53, 2174-2177.	4.1	23
45	Evolution of allosteric regulation in chorismate mutases from early plants. Biochemical Journal, 2017, 474, 3705-3717.	3.7	16
46	Functional classification of protein toxins as a basis for bioinformatic screening. Scientific Reports, 2017, 7, 13940.	3.3	19
47	Conformational changes in the di-domain structure of Arabidopsis phosphoethanolamine methyltransferase leads to active-site formation. Journal of Biological Chemistry, 2017, 292, 21690-21702.	3.4	16
48	Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nature Chemical Biology, 2017, 13, 1029-1035.	8.0	42
49	Revisiting protein structure, function, and evolution in the genomic era. Journal of Invertebrate Pathology, 2017, 142, 11-15.	3.2	14
50	Gα and regulator of Gâ€protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. New Phytologist, 2017, 216, 562-575.	7.3	46
51	Nodule-Enriched GRETCHEN HAGEN 3 Enzymes Have Distinct Substrate Specificities and Are Important for Proper Soybean Nodule Development. International Journal of Molecular Sciences, 2017, 18, 2547.	4.1	9
52	β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase. International Journal of Molecular Sciences, 2017, 18, 526.	4.1	46
53	Dissonance Strikes a Chord in Stilbene Synthesizers. Cell Chemical Biology, 2016, 23, 1440-1441.	5.2	0
54	Structural biology and regulation of the plant sulfation pathway. Chemico-Biological Interactions, 2016, 259, 31-38.	4.0	21

#	Article	IF	CITATIONS
55	Structure and Mechanism of Isopropylmalate Dehydrogenase from Arabidopsis thaliana. Journal of Biological Chemistry, 2016, 291, 13421-13430.	3.4	13
56	Identification of a Noroxomaritidine Reductase with Amaryllidaceae Alkaloid Biosynthesis Related Activities. Journal of Biological Chemistry, 2016, 291, 16740-16752.	3.4	42
57	The next green movement: Plant biology for the environment and sustainability. Science, 2016, 353, 1241-1244.	12.6	117
58	<i>Arabidopsis thaliana</i> GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13917-13922.	7.1	118
59	The <i>β</i> yanoalanine synthase pathway: beyond cyanide detoxification. Plant, Cell and Environment, 2016, 39, 2329-2341.	5.7	79
60	Refining the nuclear auxin response pathway through structural biology. Current Opinion in Plant Biology, 2015, 27, 22-28.	7.1	40
61	Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance. Journal of Biological Chemistry, 2015, 290, 17321-17330.	3.4	26
62	Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 81, 4216-4223.	3.1	30
63	Defining a Two-pronged Structural Model for PB1 (Phox/Bem1p) Domain Interaction in Plant Auxin Responses. Journal of Biological Chemistry, 2015, 290, 12868-12878.	3.4	31
64	Recapitulating the Structural Evolution of Redox Regulation in Adenosine 5′-Phosphosulfate Kinase from Cyanobacteria to Plants. Journal of Biological Chemistry, 2015, 290, 24705-24714.	3.4	15
65	Production of high levels of polyâ€3â€hydroxybutyrate in plastids of <i><scp>C</scp>amelina sativa</i> seeds. Plant Biotechnology Journal, 2015, 13, 675-688.	8.3	35
66	Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans. Frontiers in Plant Science, 2014, 5, 633.	3.6	34
67	An Alternative Mechanism for the Methylation of Phosphoethanolamine Catalyzed by Plasmodium falciparum Phosphoethanolamine Methyltransferase*. Journal of Biological Chemistry, 2014, 289, 33815-33825.	3.4	12
68	Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6509-6514.	7.1	23
69	Structural Evolution of Differential Amino Acid Effector Regulation in Plant Chorismate Mutases. Journal of Biological Chemistry, 2014, 289, 28619-28628.	3.4	39
70	Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5427-5432.	7.1	249
71	Nematode phospholipid metabolism: an example of closing the genome–structure–function circle. Trends in Parasitology, 2014, 30, 241-250.	3.3	15
72	Structure and Mechanism of Soybean ATP Sulfurylase and the Committed Step in Plant Sulfur Assimilation. Journal of Biological Chemistry, 2014, 289, 10919-10929.	3.4	39

#	Article	IF	CITATIONS
73	Lights, X-Rays, Oxygen!. Cell, 2014, 158, 701-703.	28.9	0
74	A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nature Chemical Biology, 2014, 10, 830-836.	8.0	76
75	Immunolocalization of glutathione biosynthesis enzymes in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2014, 75, 9-13.	5.8	18
76	Evolution of Structure and Mechanistic Divergence in Di-Domain Methyltransferases from Nematode Phosphocholine Biosynthesis. Structure, 2013, 21, 1778-1787.	3.3	22
77	The cysteine regulatory complex from plants and microbes: what was old is new again. Current Opinion in Structural Biology, 2013, 23, 302-310.	5.7	53
78	Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochemical Journal, 2013, 450, 63-72.	3.7	34
79	Enzyme Action in the Regulation of Plant Hormone Responses. Journal of Biological Chemistry, 2013, 288, 19304-19311.	3.4	64
80	Kinetic mechanism of the dimeric ATP sulfurylase from plants. Bioscience Reports, 2013, 33, .	2.4	18
81	Structure of Soybean Serine Acetyltransferase and Formation of the Cysteine Regulatory Complex as a Molecular Chaperone. Journal of Biological Chemistry, 2013, 288, 36463-36472.	3.4	32
82	Editor's Choice: Evaluating the Potential for Adverse Interactions within Genetically Engineered Breeding Stacks. Plant Physiology, 2013, 161, 1587-1594.	4.8	40
83	Redox-linked Gating of Nucleotide Binding by the N-terminal Domain of Adenosine 5′-Phosphosulfate Kinase*. Journal of Biological Chemistry, 2013, 288, 6107-6115.	3.4	17
84	Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2072-2080.	2.5	37
85	Structure of Soybean β-Cyanoalanine Synthase and the Molecular Basis for Cyanide Detoxification in Plants. Plant Cell, 2012, 24, 2696-2706.	6.6	50
86	A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee Â. Plant Physiology, 2012, 160, 249-260.	4.8	120
87	Nucleotide Binding Site Communication in Arabidopsis thaliana Adenosine 5′-Phosphosulfate Kinase. Journal of Biological Chemistry, 2012, 287, 30385-30394.	3.4	24
88	Editor's Choice: Crop Genome Plasticity and Its Relevance to Food and Feed Safety of Genetically Engineered Breeding Stacks. Plant Physiology, 2012, 160, 1842-1853.	4.8	68
89	To be or not to be transgenic. Nature Biotechnology, 2012, 30, 825-826.	17.5	4
90	Structure and Reaction Mechanism of Phosphoethanolamine Methyltransferase from the Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2012, 287, 1426-1434.	3.4	55

#	Article	lF	CITATIONS
91	Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle. Journal of Biological Chemistry, 2012, 287, 17870-17881.	3.4	31
92	Structural basis and evolution of redox regulation in plant adenosine-5′-phosphosulfate kinase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 309-314.	7.1	91
93	Redox Switching of Adenosine-5′-phosphosulfate Kinase with Photoactivatable Atomic Oxygen Precursors. Journal of the American Chemical Society, 2012, 134, 16979-16982.	13.7	31
94	Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins. Science, 2012, 336, 1708-1711.	12.6	137
95	Crystal structure of phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with amodiaquine. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4990-4993.	2.2	20
96	Assessing functional diversity in the soybean β-substituted alanine synthase enzyme family. Phytochemistry, 2012, 83, 15-24.	2.9	16
97	Structural biology of plant sulfur metabolism: From assimilation to biosynthesis. Natural Product Reports, 2012, 29, 1138.	10.3	49
98	From climate change to molecular response: redox proteomics of ozoneâ€induced responses in soybean. New Phytologist, 2012, 194, 220-229.	7.3	57
99	Mutational analysis of YgfZ, a folate-dependent protein implicated in iron/sulphur cluster metabolism. FEMS Microbiology Letters, 2012, 326, 168-172.	1.8	8
100	Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman–Birk protease inhibitor in seeds. Planta, 2012, 235, 13-23.	3.2	62
101	Structural and Functional Evolution of Isopropylmalate Dehydrogenases in the Leucine and Glucosinolate Pathways. FASEB Journal, 2012, 26, 576.2.	0.5	0
102	Structural and Kinetic Analysis of the Unnatural Fusion Protein 4-Coumaroyl-CoA Ligase::Stilbene Synthase. Journal of the American Chemical Society, 2011, 133, 20684-20687.	13.7	37
103	Plant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products. Frontiers in Plant Science, 2011, 2, 45.	3.6	78
104	An elaborate heterotrimeric Gâ€protein family from soybean expands the diversity of plant Gâ€protein networks. New Phytologist, 2011, 190, 35-48.	7.3	67
105	14-3-3 Proteins fine-tune plant nutrient metabolism. FEBS Letters, 2011, 585, 143-147.	2.8	81
106	Redoxâ€regulatory mechanisms induced by oxidative stress in <i>Brassica juncea</i> roots monitored by 2â€DE proteomics. Proteomics, 2011, 11, 1346-1350.	2.2	13
107	Thermodynamic Evaluation of Ligand Binding in the Plant-like Phosphoethanolamine Methyltransferases of the Parasitic Nematode Haemonchus contortus. Journal of Biological Chemistry, 2011, 286, 38060-38068.	3.4	15
108	Structural and Functional Evolution of Isopropylmalate Dehydrogenases in the Leucine and Glucosinolate Pathways of Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 28794-28801.	3.4	39

#	Article	IF	CITATIONS
109	Toward Protein Engineering for Phytoremediation: Possibilities and Challenges. International Journal of Phytoremediation, 2011, 13, 77-89.	3.1	11
110	The Phosphobase Methylation Pathway in Caernorhabditis elegans: A New Route to Phospholipids in Animals. Current Chemical Biology, 2011, 5, 183-188.	0.5	2
111	From sulfur to homoglutathione: thiol metabolism in soybean. Amino Acids, 2010, 39, 963-978.	2.7	59
112	Kinetic Basis for the Conjugation of Auxin by a GH3 Family Indole-acetic Acid-Amido Synthetase. Journal of Biological Chemistry, 2010, 285, 29780-29786.	3.4	91
113	Threonine-insensitive Homoserine Dehydrogenase from Soybean. Journal of Biological Chemistry, 2010, 285, 827-834.	3.4	17
114	Modulating plant hormones by enzyme action. Plant Signaling and Behavior, 2010, 5, 1607-1612.	2.4	78
115	Sensing Sulfur Conditions: Simple to Complex Protein Regulatory Mechanisms in Plant Thiol Metabolism. Molecular Plant, 2010, 3, 269-279.	8.3	83
116	Structural Basis for Evolution of Product Diversity in Soybean Glutathione Biosynthesis. Plant Cell, 2009, 21, 3450-3458.	6.6	22
117	Assembly of the Cysteine Synthase Complex and the Regulatory Role of Protein-Protein Interactions. Journal of Biological Chemistry, 2009, 284, 10268-10275.	3.4	70
118	Comprehensive analysis of the <i>Brassica juncea</i> root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics, 2009, 9, 2419-2431.	2.2	148
119	A redoxâ€active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant Journal, 2009, 60, 679-690.	5.7	102
120	The devil (and an active jasmonate hormone) is in the details. Nature Chemical Biology, 2009, 5, 273-274.	8.0	2
121	A liquid chromatography–tandem mass spectrometry-based assay for indole-3-acetic acid–amido synthetase. Analytical Biochemistry, 2009, 390, 149-154.	2.4	46
122	Contributions of conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing in the active site of tyrosine ammonia lyase. Phytochemistry, 2008, 69, 1496-1506.	2.9	32
123	An integrated protein chemistry laboratory. Biochemistry and Molecular Biology Education, 2008, 36, 125-128.	1.2	5
124	The role of 5′-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: Molecular cloning, kinetic characterization, and gene expression. Phytochemistry, 2008, 69, 356-364.	2.9	32
125	Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant Journal, 2008, 54, 750-762.	5.7	151
126	A Single Amino Acid Change Is Responsible for Evolution of Acyltransferase Specificity in Bacterial Methionine Biosynthesis. Journal of Biological Chemistry, 2008, 283, 7561-7567.	3.4	21

#	Article	IF	CITATIONS
127	Reaction Mechanism of Glutathione Synthetase from Arabidopsis thaliana. Journal of Biological Chemistry, 2007, 282, 17157-17165.	3.4	24
128	Thiol-Based Regulation of Redox-Active Glutamate-Cysteine Ligase from <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2653-2661.	6.6	154
129	Phosphatidylcholine Biosynthesis as a Potential Target for Inhibition of Metabolism in Parasitic Nematodes. Current Enzyme Inhibition, 2007, 3, 133-142.	0.4	9
130	Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6460-6465.	7.1	129
131	Identification, Characterization, Epitope Mapping, and Three-Dimensional Modeling of the α-Subunit of β-Conglycinin of Soybean, a Potential Allergen for Young Pigs. Journal of Agricultural and Food Chemistry, 2007, 55, 4014-4020.	5.2	52
132	Thermodynamics of the Interaction between O-Acetylserine Sulfhydrylase and the C-Terminus of Serine Acetyltransferase. Biochemistry, 2007, 46, 5586-5594.	2.5	46
133	Developing a new interdisciplinary lab course for undergraduate and graduate students: Plant cells and proteins. Biochemistry and Molecular Biology Education, 2007, 35, 410-415.	1.2	4
134	Using Unnatural Protein Fusions to Engineer Resveratrol Biosynthesis in Yeast and Mammalian Cells. Journal of the American Chemical Society, 2006, 128, 13030-13031.	13.7	179
135	Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Archives of Biochemistry and Biophysics, 2006, 450, 20-29.	3.0	53
136	Development of a high-throughput purification method and a continuous assay system for chlorophyllase. Analytical Biochemistry, 2006, 353, 93-98.	2.4	4
137	Structural Basis for Interaction of O-Acetylserine Sulfhydrylase and Serine Acetyltransferase in the Arabidopsis Cysteine Synthase Complex. Plant Cell, 2006, 18, 3647-3655.	6.6	103
138	Mutagenic Definition of a Papain-Like Catalytic Triad, Sufficiency of the N-Terminal Domain for Single-Site Core Catalytic Enzyme Acylation, and C-Terminal Domain for Augmentative Metal Activation of a Eukaryotic Phytochelatin Synthase. Plant Physiology, 2006, 141, 858-869.	4.8	65
139	Molecular Basis of Cysteine Biosynthesis in Plants. Journal of Biological Chemistry, 2005, 280, 38803-38813.	3.4	161
140	Mechanistic analysis of wheat chlorophyllase. Archives of Biochemistry and Biophysics, 2005, 438, 146-155.	3.0	83
141	Kinetic Mechanism of Glutathione Synthetase from Arabidopsis thaliana. Journal of Biological Chemistry, 2004, 279, 42726-42731.	3.4	55
142	Arabidopsis thaliana Glutamate-Cysteine Ligase. Journal of Biological Chemistry, 2004, 279, 33463-33470.	3.4	126
143	Crystal Structure and Molecular Modeling of 17-DMAG in Complex with Human Hsp90. Chemistry and Biology, 2003, 10, 361-368.	6.0	183
144	Reaction Mechanism of Chalcone Isomerase. Journal of Biological Chemistry, 2002, 277, 1361-1369.	3.4	138

#	Article	IF	CITATIONS
145	Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5319-5324.	7.1	130
146	Enzyme Redesign. Chemical Reviews, 2001, 101, 3027-3046.	47.7	132
147	Structure-function aspects and inhibitor design of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Molecular and Cellular Endocrinology, 2001, 171, 137-149.	3.2	88
148	Structural control of polyketide formation in plant-specific polyketide synthases. Chemistry and Biology, 2000, 7, 919-930.	6.0	236
149	A kaleidoscope of carotenoids. Nature Biotechnology, 2000, 18, 825-826.	17.5	6
150	Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nature Structural Biology, 2000, 7, 786-791.	9.7	311
151	Mechanism of Chalcone Synthase. Journal of Biological Chemistry, 2000, 275, 39640-39646.	3.4	123
152	Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature Structural Biology, 1999, 6, 775-784.	9.7	584
153	A new nomenclature for the aldo-keto reductase superfamily. Biochemical Pharmacology, 1997, 54, 639-647.	4.4	346
154	Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 31±-hydroxysteroid/dihydrodiol dehydrogenase. Structure, 1997, 5, 799-812.	3.3	142
155	Spectroscopic Characterization of Bendazac and Benzydamine: Possible Photochemical Modes of Action. Biochemical and Biophysical Research Communications, 1996, 221, 266-270.	2.1	3
156	Characterization of the Substrate Binding Site in Rat Liver 3α-Hydroxysteroid/Dihydrodiol Dehydrogenase. Journal of Biological Chemistry, 1996, 271, 30190-30198.	3.4	54