List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1394469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Embryo morphology and live birth in the United States. F&S Reports, 2022, 3, 131-137.	0.4	1
2	Effect of trophectoderm biopsy for PGT-A on live birth rate per embryo in good prognosis patients. Archives of Gynecology and Obstetrics, 2022, 306, 1321-1327.	0.8	2
3	Effect of Age and Morphology on Live Birth Rate After Cleavage Stage Embryo Transfer. Reproductive Sciences, 2021, 28, 43-51.	1.1	10
4	Transfer the best and biopsy the rest? Blastocyst euploidy rates differ by morphology and day of biopsy. Archives of Gynecology and Obstetrics, 2021, 303, 249-258.	0.8	11
5	A View from the past into our collective future: the oncofertility consortium vision statement. Journal of Assisted Reproduction and Genetics, 2021, 38, 3-15.	1.2	25
6	Influence of Trophectoderm Biopsy Prior to Frozen Blastocyst Transfer on Obstetrical Outcomes. Reproductive Sciences, 2021, 28, 3459-3465.	1.1	11
7	A validated model for predicting live birth after embryo transfer. Scientific Reports, 2021, 11, 10800.	1.6	4
8	Longitudinal antimüllerian hormone and its correlation with pubertal milestones. F&S Reports, 2021, 2, 238-244.	0.4	3
9	Developmental potential of immature human oocytes aspirated after controlled ovarian stimulation. Journal of Assisted Reproduction and Genetics, 2021, 38, 2291-2299.	1.2	7
10	Germ–Somatic Cell Interactions Are Involved in Establishing the Follicle Reserve in Mammals. Frontiers in Cell and Developmental Biology, 2021, 9, 674137.	1.8	11
11	What is the optimal timing of intracytoplasmic sperm injection (ICSI) after EGG retrieval? A randomized controlled trial. Journal of Assisted Reproduction and Genetics, 2021, 38, 2151-2156.	1.2	6
12	Association of bioavailable inhibin B and oocyte yield in controlled ovarian stimulation. F&S Reports, 2021, 2, 189-194.	0.4	2
13	Examining pre-term birth and cesarean section rates in gestational carrier pregnancies. Journal of Assisted Reproduction and Genetics, 2021, 38, 2707-2712.	1.2	1
14	Effect of age and morphology on sustained implantation rate after euploid blastocyst transfer. Reproductive BioMedicine Online, 2021, 43, 395-403.	1.1	6
15	EFFECT OF TROPHECTODERM BIOPSY FOR PGT-A ON LIVE BIRTH RATE PER EMBRYO IN GOOD PROGNOSIS PATIENTS. Fertility and Sterility, 2021, 116, e389.	0.5	0
16	THE FULL ANALYSIS OF SART REGISTRY LIVE BIRTH RATES: LIVE BIRTH RATES PER FRESH OR FROZEN EMBRYO STRATIFIED BY EMBRYO AND PATIENT AGE. Fertility and Sterility, 2021, 116, e252.	0.5	0
17	Klotho: spinning up some new hype for decreased ovarian reserve research?. Fertility and Sterility, 2020, 114, 1174.	0.5	2
18	WHAT IS THE OPTIMAL TIMING OF INTRACYTOPLASMIC SPERM INJECTION (ICSI) AFTER EGG RETRIEVAL? A RANDOMIZED CONTROLLED TRIAL. Fertility and Sterility, 2020, 114, e2.	0.5	0

#	Article	IF	CITATIONS
19	BIOAVAILABLE INHIBIN B (INHB) MAY BE A BETTER MARKER OF OOCYTE YIELD THAN CURRENTLY USED MARKERS OF OVARIAN RESERVE. Fertility and Sterility, 2020, 114, e453.	0.5	0
20	ALL TWIN PREGNANCIES ARE NOT THE SAME: EFFECT OF MATERNAL PARITY ON OUTCOMES OF TWIN PREGNANCIES CONCEIVED SPONTANEOUSLY VERSUS WITH ASSISTED REPRODUCTIVE TECHNOLOGY. Fertility and Sterility, 2020, 114, e124.	0.5	0
21	TRANSFER THE BEST AND BIOPSY THE REST? BLASTOCYST EUPLOIDY RATES VARY BASED ON MORPHOLOGY AND DAY OF BIOPSY. Fertility and Sterility, 2020, 113, e27-e29.	0.5	1
22	TROPHECTODERM BIOPSY PRIOR TO AUTOLOGOUS FROZEN BLASTOCYST TRANSFER IS NOT ASSOCIATED WITH ADVERSE OBSTETRICAL OUTCOMES. Fertility and Sterility, 2020, 114, e433.	0.5	0
23	HOW LOW CAN YOU GO WITH OXYGEN CONCENTRATION?. Fertility and Sterility, 2020, 114, e113-e114.	0.5	1
24	BETTER LATE THAN NEVER?: IMMATURE OOCYTES THAT MATURE IN-VITRO LATER ON THE DAY OF RETRIEVAL AND UNDERGO INTRACYTOPLASMIC SPERM INJECTION ARE A VALUABLE SOURCE OF USABLE EMBRYOS. Fertility and Sterility, 2020, 114, e154-e155.	0.5	0
25	Long-term imatinib diminishes ovarian reserve and impacts embryo quality. Journal of Assisted Reproduction and Genetics, 2020, 37, 1459-1466.	1.2	14
26	Examining the effects of temperature on embryo growth. Fertility and Sterility, 2019, 111, e36.	0.5	0
27	Imatinib treatments have long-term impact on placentation and embryo survival. Scientific Reports, 2019, 9, 2535.	1.6	26
28	Autoimmune Regulator is required in female mice for optimal embryonic development and implantationâ€. Biology of Reproduction, 2019, 100, 1492-1504.	1.2	16
29	The mutual benefits of research in wild animal species and human-assisted reproduction. Journal of Assisted Reproduction and Genetics, 2018, 35, 551-560.	1.2	26
30	Pushing the limits of detection: is cell-free DNA a reliable source for aneuploidy screening?. Fertility and Sterility, 2018, 109, e8-e9.	0.5	0
31	Blastulation timing is associated with differential mitochondrial content in euploid embryos. Journal of Assisted Reproduction and Genetics, 2018, 35, 711-720.	1.2	24
32	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
33	Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos. Fertility and Sterility, 2018, 110, 467-475.e2.	0.5	75
34	Structural Aspects of Oocyte Maturation. , 2018, , 176-182.		2
35	Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. Journal of Assisted Reproduction and Genetics, 2018, 35, 1777-1786.	1.2	38
36	Sperm-oocyte contact induces outside-in signaling via PYK2 activation. Developmental Biology, 2017, 428, 52-62.	0.9	12

#	Article	IF	CITATIONS
37	Distinct microrna suggest differential gene regulation in granulosa cells in young women with normal ovarian reserve compared to YOUNG WOMEN WITH Diminished ovarian reserve. Fertility and Sterility, 2017, 107, e5.	0.5	2
38	The role of angiogenic markers in adverse perinatal outcomes: fresh versus frozen embryo transfers. Journal of Assisted Reproduction and Genetics, 2017, 34, 1639-1643.	1.2	7
39	Stage-specific follicular extracellular vesicle uptake and regulation of bovine granulosa cell proliferationâ€. Biology of Reproduction, 2017, 97, 644-655.	1.2	70
40	Perinatal outcomes after natural conception versus inÂvitro fertilization (IVF) in gestational surrogates: a model to evaluate IVF treatment versus maternal effects. Fertility and Sterility, 2017, 108, 993-998.	0.5	67
41	MicroRNA Regulation of Endocrine Functions in the Ovary. , 2016, , 109-127.		2
42	Role of focal adhesion kinase in oocyteâ€follicle communication. Molecular Reproduction and Development, 2015, 82, 90-102.	1.0	28
43	MicroRNA in Ovarian Biology and Disease. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022962.	2.9	38
44	Extracellular Vesicles from Bovine Follicular Fluid Support Cumulus Expansion1. Biology of Reproduction, 2015, 93, 117.	1.2	131
45	Postâ€ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Molecular Reproduction and Development, 2014, 81, 928-945.	1.0	25
46	Ovarian autoimmune disease: clinical concepts and animal models. Cellular and Molecular Immunology, 2014, 11, 510-521.	4.8	23
47	PTK2b function during fertilization of the mouse oocyte. Biochemical and Biophysical Research Communications, 2014, 450, 1212-1217.	1.0	12
48	Signaling Modalities During Oogenesis in Mammals. Current Topics in Developmental Biology, 2013, 102, 227-242.	1.0	28
49	Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm–egg interactions and anaphase resumption. Molecular Reproduction and Development, 2013, 80, 260-272.	1.0	15
50	A catalyst for change in reproductive science: John D. Biggers as a mentor's mentor. Journal of Assisted Reproduction and Genetics, 2013, 30, 979-994.	1.2	4
51	The Autoimmune Regulator Prevents Premature Reproductive Senescence in Female Mice1. Biology of Reproduction, 2012, 86, 110.	1.2	43
52	Focal Adhesion Kinase (FAK) Regulates Oocyte-Granulosa Contacts and Subsequent Oocyte Developmental Potential Biology of Reproduction, 2012, 87, 302-302.	1.2	0
53	<i>>Fer</i> tyrosine kinase is required for germinal vesicle breakdown and meiosisâ€I in mouse oocytes. Molecular Reproduction and Development, 2011, 78, 33-47.	1.0	6
54	Protein tyrosine kinase signaling during oocyte maturation and fertilization. Molecular Reproduction and Development, 2011, 78, 831-845.	1.0	49

#	Article	IF	CITATIONS
55	Dynamics of protein phosphorylation during meiotic maturation. Journal of Assisted Reproduction and Genetics, 2010, 27, 169-182.	1.2	24
56	Role of Fyn kinase in oocyte developmental potential. Reproduction, Fertility and Development, 2010, 22, 966.	0.1	24
57	Mammalian oocytes are targets for prostaglandin E2 (PGE2) action. Reproductive Biology and Endocrinology, 2010, 8, 131.	1.4	38
58	Fer Tyrosine Kinase Is Required for GVBD and Metaphase-I Spindle Organization Biology of Reproduction, 2010, 83, 559-559.	1.2	0
59	Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex. Molecular Reproduction and Development, 2009, 76, 819-831.	1.0	41
60	Further optimization of mouse spermatozoa evaporative drying techniques. Cryobiology, 2009, 59, 113-115.	0.3	17
61	Functions of Fyn kinase in the completion of meiosis in mouse oocytes. Developmental Biology, 2009, 327, 280-287.	0.9	53
62	Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction, 2009, 137, 709-720.	1.1	110
63	Protein Tyrosine Kinase Signaling During Sperm-Egg Interaction and Meiosis Resumption Biology of Reproduction, 2009, 81, 332-332.	1.2	Ο
64	Loss of Fyn kinase Impairs Oocyte Quality and Developmental Potential Biology of Reproduction, 2009, 81, 25-25.	1.2	0
65	Oogenesis: Prospects and challenges for the future. Journal of Cellular Physiology, 2008, 216, 355-365.	2.0	61
66	Dicer1 Is Essential for Female Fertility and Normal Development of the Female Reproductive System. Endocrinology, 2008, 149, 6207-6212.	1.4	209
67	Src-Family Protein Tyrosine Kinases Are Required for Meiotic Maturation in the Mouse Biology of Reproduction, 2008, 78, 191-192.	1.2	Ο
68	Long-term storage of mouse spermatozoa after evaporative drying. Reproduction, 2007, 133, 919-929.	1.1	47
69	Localized activation of Src-family protein kinases in the mouse egg. Developmental Biology, 2007, 306, 241-254.	0.9	56
70	Reply: One-step versus two-step culture of mouse preimplantation embryos. Human Reproduction, 2006, 21, 1936-1939.	0.4	10
71	Mouse Sperm Desiccated and Stored in Trehalose Medium Without Freezing1. Biology of Reproduction, 2005, 73, 627-633.	1.2	85
72	One-step versus two-step culture of mouse preimplantation embryos: is there a difference?. Human Reproduction, 2005, 20, 3376-3384.	0.4	73

#	Article	IF	CITATIONS
73	Mouse embryo development following IVF in media containing either l-glutamine or glycyl-l-glutamine. Human Reproduction, 2005, 20, 1364-1371.	0.4	58
74	Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reproductive BioMedicine Online, 2004, 9, 59-69.	1.1	62
75	Discrepancies between the effects of glutamine in cultures of preimplantation mouse embryos. Reproductive BioMedicine Online, 2004, 9, 70-73.	1.1	33
76	Desiccation Tolerance of Spermatozoa Dried at Ambient Temperature: Production of Fetal Mice1. Biology of Reproduction, 2003, 68, 1779-1786.	1.2	79
77	Intracytoplasmic sperm injection (ICSI) enables rescue of valuable mutant mouse strains. Comparative Medicine, 2003, 53, 265-9.	0.4	7
78	Evidence that glucose is not always an inhibitor of mouse preimplantation development in vitro. Human Reproduction, 2001, 16, 153-163.	0.4	72
79	Amino Acids and Preimplantation Development of the Mouse in Protein-Free Potassium Simplex Optimized Medium1. Biology of Reproduction, 2000, 63, 281-293.	1.2	209
80	Coordinate action ofWt1 and a modifier gene supports embryonic survival in the oviduct. Molecular Reproduction and Development, 1999, 52, 366-375.	1.0	28
81	Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality. Molecular and Cellular Biology, 1999, 19, 7237-7244.	1.1	331
82	Polyvinyl alcohol and amino acids as substitutes for bovine serum albumin in culture media for mouse preimplantation embryos. Human Reproduction Update, 1997, 3, 125-135.	5.2	79
83	Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature, 1996, 384, 470-474.	13.7	668
84	Cryopreservation of sheep embryos using ethylene glycol. Animal Reproduction Science, 1993, 30, 273-280.	0.5	19
85	In vitro development of ovine embryos in CZB medium. Theriogenology, 1992, 37, 559-569.	0.9	14