Raghubansh Kumar Kumar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393827/publications.pdf

Version: 2024-02-01

30 papers

2,698 citations

³⁹⁴⁴²¹
19
h-index

30 g-index

30 all docs

30 docs citations

30 times ranked

2519 citing authors

#	Article	IF	Citations
1	Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 2010, 14, 233-248.	16.4	668
2	A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 2011, 55, 893-910.	10.8	337
3	Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CI engine. Energy Conversion and Management, 2013, 74, 323-331.	9.2	207
4	Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Brazilian Journal of Chemical Engineering, 2011, 28, 659-667.	1.3	196
5	Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield. Fuel, 2016, 185, 508-516.	6.4	138
6	Liquid fuel from castor seeds by pyrolysis. Fuel, 2011, 90, 2538-2544.	6.4	115
7	Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 2016, 4, 3696-3705.	6.7	109
8	Pyrolysis of Mahua seed (Madhuca indica) $\hat{a}\in$ Production of biofuel and its characterization. Energy Conversion and Management, 2016, 108, 529-538.	9.2	106
9	Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel, 2012, 96, 579-585.	6.4	101
10	Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel, 2013, 103, 437-443.	6.4	99
11	Experimental investigation on a diesel engine fueled with bio-oil derived from waste wood–biodiesel emulsions. Energy, 2013, 55, 610-618.	8.8	93
12	Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene. Journal of Fuel Chemistry and Technology, 2011, 39, 198-202.	2.0	76
13	Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines. Energy, 2017, 118, 600-612.	8.8	71
14	Optimization of process parameters by response surface methodology (RSM) for catalytic pyrolysis of waste high-density polyethylene to liquid fuel. Journal of Environmental Chemical Engineering, 2014, 2, 115-122.	6.7	52
15	Optimization of process for the production of bio-oil from eucalyptus wood. Journal of Fuel Chemistry and Technology, 2010, 38, 162-167.	2.0	45
16	Thermolysis of polanga seed cake to bio-oil using semi batch reactor. Fuel, 2012, 97, 450-456.	6.4	45
17	Production of biofuel and biochar by thermal pyrolysis of linseed seed. Biomass Conversion and Biorefinery, 2013, 3, 327-335.	4.6	36
18	Prediction of minimum bubbling velocity, fluidization index and range of particulate fluidization for gas–solid fluidization in cylindrical and non-cylindrical beds. Powder Technology, 2005, 159, 168-172.	4.2	32

#	Article	IF	CITATIONS
19	Prediction of minimum velocity and minimum bed pressure drop for gasâ€solid fluidization in conical conduits. Canadian Journal of Chemical Engineering, 1992, 70, 185-189.	1.7	23
20	The Use of Mustard Cake Pyrolytic Oil Blends as Fuel in a Diesel Engine. Waste and Biomass Valorization, 2014, 5, 661-668.	3.4	20
21	Thermolysis of Medical Waste (Waste Syringe) to Liquid Fuel Using Semi Batch Reactor. Waste and Biomass Valorization, 2015, 6, 507-514.	3.4	19
22	Biofuel and co-products from algae solvent extraction. Journal of Environmental Management, 2019, 247, 196-204.	7.8	18
23	Open encapsulation-vitrification for cryopreservation of algae. Cryobiology, 2016, 73, 232-239.	0.7	17
24	Performance and emission analysis of blends of karanja methyl ester with diesel in a compression ignition engine. International Journal of Ambient Energy, 2011, 32, 161-166.	2.5	13
25	Thermo-catalytic degradation of low density polyethylene to liquid fuel over kaolin catalyst. International Journal of Environment and Waste Management, 2014, 13, 104.	0.3	13
26	An Experimental Investigation on a Diesel Engine Fueled by Biodiesel and its Emulsions with Wood Pyrolysis Oil. International Journal of Green Energy, 2012, 9, 749-765.	3.8	12
27	Conversion of waste polypropylene to liquid fuel using acid-activated kaolin. Waste Management and Research, 2014, 32, 997-1004.	3.9	12
28	Valorization of Jatropha seed to fuel and chemical feedstock using a thermochemical conversion process. Biofuels, 2016, 7, 429-435.	2.4	11
29	Production and characterization of the maximum liquid product obtained from co-pyrolysis of sugarcane bagasse and thermocol waste. Cellulose, 2021, 28, 4223-4239.	4.9	10
30	Bio-diesel production from airborne algae. Environmental Challenges, 2021, 5, 100210.	4.2	4