Agusti Lledos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393726/publications.pdf

Version: 2024-02-01

374 papers

13,379 citations

56 h-index 54882 84 g-index

405 all docs 405 does citations

405 times ranked 8822 citing authors

#	Article	IF	CITATIONS
1	Beyond Continuum Solvent Models in Computational Homogeneous Catalysis. Topics in Catalysis, 2022, 65, 118-140.	1.3	24
2	Successes and Challenges in Multiscale Modelling of Artificial Metalloenzymes: the Case Study of POP-Rh2 Cyclopropanase. Faraday Discussions, 2022, , .	1.6	1
3	Copper(i) activation of C–X bonds: bimolecular vs. unimolecular reaction mechanism. Chemical Communications, 2022, , .	2.2	3
4	Direct Benzene Hydroxylation with Dioxygen Induced by Copper Complexes: Uncovering the Active Species by DFT Calculations. Organometallics, 2022, 41, 1892-1904.	1.1	4
5	Reversible carbon–boron bond formation at platinum centers through σ-BH complexes. Chemical Science, 2021, 12, 1647-1655.	3.7	10
6	Computational Analysis on the Pd-Catalyzed C–N Coupling of Ammonia with Aryl Bromides Using a Chelate Phosphine Ligand. Journal of Organic Chemistry, 2021, 86, 4007-4017.	1.7	10
7	Understanding the Use of Phosphine-(EWO) Ligands in Negishi Cross-Coupling: Experimental and Density Functional Theory Mechanistic Study. Organometallics, 2021, 40, 2272-2282.	1.1	8
8	Computational Organometallic Catalysis: Where We Are, Where We Are Going. European Journal of Inorganic Chemistry, 2021, 2021, 2547-2555.	1.0	17
9	Transmetalation Reactions Triggered by Electron Transfer between Organocopper Complexes. Inorganic Chemistry, 2021, 60, 11633-11639.	1.9	6
10	Ligand Effects in Carbonâ^Boron Coupling Processes Mediated by Ïfâ€BH Platinum Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3528-3539.	1.0	4
11	Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nature Catalysis, 2021, 4, 643-653.	16.1	32
12	How acid can become a dihydrogen complex in water? A DFT study. Journal of Organometallic Chemistry, 2021, 949, 121957.	0.8	3
13	Ambiphilic boryl groups in a neutral Ni(<scp>ii</scp>) complex: a new activation mode of H ₂ . Chemical Science, 2021, 12, 2540-2548.	3.7	11
14	What Makes a Good (Computed) Energy Profile?. Topics in Organometallic Chemistry, 2020, , 1-38.	0.7	15
15	Aerobic intramolecular carbon–hydrogen bond oxidation promoted by Cu(<scp>i</scp>) complexes. Dalton Transactions, 2020, 49, 14647-14655.	1.6	9
16	Comparative Mechanistic Study on the [Au(NHC)] ⁺ -Catalyzed Hydration of Alkynes, Alkenes, and Allenes. Organometallics, 2020, 39, 3469-3479.	1.1	14
17	Dynamic Pd ^{II} /Cu ^I Multimetallic Assemblies as Molecular Models to Study Metal–Metal Cooperation in Sonogashira Coupling. Chemistry - A European Journal, 2020, 26, 12168-12179.	1.7	23
18	Molecular Modeling for Artificial Metalloenzyme Design and Optimization. Accounts of Chemical Research, 2020, 53, 896-905.	7.6	29

#	Article	IF	CITATIONS
19	Catalytic Regioselective Isomerization of 2,2â€Disubstituted Oxetanes to Homoallylic Alcohols. Angewandte Chemie, 2020, 132, 7591-7597.	1.6	1
20	Catalytic Regioselective Isomerization of 2,2â€Disubstituted Oxetanes to Homoallylic Alcohols. Angewandte Chemie - International Edition, 2020, 59, 7521-7527.	7.2	16
21	Skeletal diversity in Pt- and Au-catalyzed annulations of allenedienes: dissecting unconventional mechanistic pathways. Chemical Science, 2020, 11, 4209-4220.	3.7	1
22	Innerâ€Sphere Oxygen Activation Promoting Outerâ€Sphere Nucleophilic Attack on Olefins. Chemistry - A European Journal, 2019, 25, 14546-14554.	1.7	7
23	Ïfâ€Silane Platinum(II) Complexes as Intermediates in Câ^'Si Bondâ€Coupling Processes. Chemistry - A European Journal, 2019, 25, 11346-11355.	1.7	17
24	Mild Iridiumâ€Catalysed Isomerization of Epoxides. Computational Insights and Application to the Synthesis of βâ€Alkyl Amines. Advanced Synthesis and Catalysis, 2019, 361, 3624-3631.	2.1	12
25	The Effect of Cofactor Binding on the Conformational Plasticity of the Biological Receptors in Artificial Metalloenzymes: The Case Study of LmrR. Frontiers in Chemistry, 2019, 7, 211.	1.8	9
26	Integrated Computational Study of the Cu-Catalyzed Hydration of Alkenes in Water Solvent and into the Context of an Artificial Metallohydratase. ACS Catalysis, 2019, 9, 4616-4626.	5.5	10
27	Bonding rearrangements in organometallic reactions: from orbitals to curly arrows. Dalton Transactions, 2019, 48, 15740-15752.	1.6	14
28	Activating a Peroxo Ligand for Câ^'O Bond Formation. Angewandte Chemie - International Edition, 2019, 58, 3037-3041.	7.2	9
29	Origin of the Anti-Markovnikov Hydroamination of Alkenes Catalyzed by L–Au(I) Complexes: Coordination Mode Determines Regioselectivity. ACS Catalysis, 2019, 9, 848-858.	5.5	45
30	Activating a Peroxo Ligand for Câ^'O Bond Formation. Angewandte Chemie, 2019, 131, 3069-3073.	1.6	2
31	GARLEEK: Adding an extra flavor to ONIOM. Journal of Computational Chemistry, 2019, 40, 381-386.	1.5	6
32	Decoding Surface Interaction of V ^{IV} O Metallodrug Candidates with Lysozyme. Inorganic Chemistry, 2018, 57, 4456-4469.	1.9	28
33	Well-Defined \hat{l}^2 -Diketiminatocobalt(II) Complexes for Alkene Cyclohydroamination of Primary Amines. ACS Catalysis, 2018, 8, 4446-4451.	5. 5	16
34	Isolation of a Cationic Platinum(II) Ïf‧ilane Complex. Angewandte Chemie, 2018, 130, 3271-3275.	1.6	10
35	Isolation of a Cationic Platinum(II) Ïfâ€Silane Complex. Angewandte Chemie - International Edition, 2018, 57, 3217-3221.	7.2	27
36	Calculation of Reaction Free Energies in Solution: A Comparison of Current Approaches. Journal of Physical Chemistry A, 2018, 122, 1392-1399.	1.1	101

3

#	Article	IF	CITATIONS
37	An Artificial Heme Enzyme for Cyclopropanation Reactions. Angewandte Chemie, 2018, 130, 7911-7915.	1.6	26
38	An Artificial Heme Enzyme for Cyclopropanation Reactions. Angewandte Chemie - International Edition, 2018, 57, 7785-7789.	7.2	98
39	Prediction of the interaction of metallic moieties with proteins: An update for proteinâ€ligand docking techniques. Journal of Computational Chemistry, 2018, 39, 42-51.	1.5	54
40	Direct Asymmetric Hydrogenation of $\langle i \rangle N \langle i \rangle$ -Methyl and $\langle i \rangle N \langle i \rangle$ -Alkyl Imines with an Ir(III)H Catalyst. Journal of the American Chemical Society, 2018, 140, 16967-16970.	6.6	47
41	Iridium-Catalyzed Isomerization of <i>N</i> -Sulfonyl Aziridines to Allyl Amines. Organic Letters, 2018, 20, 5747-5751.	2.4	25
42	Frontispiece: Selective Synthesis of Tetrasubstituted Olefins by Copperâ€Mediated Acetoxythiolation of Internal Alkynes: Scope and Mechanistic Studies. Chemistry - A European Journal, 2018, 24, .	1.7	0
43	Accurate prediction of vertical electronic transitions of Ni(II) coordination compounds via time dependent density functional theory. International Journal of Quantum Chemistry, 2018, 118, e25655.	1.0	16
44	Mechanistic Insights on the Hydration of Terminal and Internal Allenes Catalyzed by [(NHC)Au] ⁺ . Organometallics, 2018, 37, 3543-3551.	1.1	10
45	Selective Synthesis of Tetrasubstituted Olefins by Copperâ€Mediated Acetoxythiolation of Internal Alkynes: Scope and Mechanistic Studies. Chemistry - A European Journal, 2018, 24, 13124-13135.	1.7	13
46	Desulfinylation of Ag(I) Sulfinyl Mesoionic Carbenes: Preparation of $\langle i \rangle C \langle j \rangle$ -Unsubstituted Au(I) $\hat{a} \in (1,2,3]$ -Triazole Carbene Complexes. Organic Letters, 2017, 19, 822-825.	2.4	14
47	Rhodium Complexes Promoting Câ^'O Bond Formation in Reactions with Oxygen: The Role of Superoxo Species. Chemistry - A European Journal, 2017, 23, 5232-5243.	1.7	9
48	Speciation of ZnMe ₂ , ZnMeCl, and ZnCl ₂ in Tetrahydrofuran (THF), and Its Influence on Mechanism Calculations of Catalytic Processes. ACS Catalysis, 2017, 7, 3575-3583.	5 . 5	28
49	Frontispiece: Rhodium Complexes Promoting Câ^'O Bond Formation in Reactions with Oxygen: The Role of Superoxo Species. Chemistry - A European Journal, 2017, 23, .	1.7	0
50	Elucidation of Binding Site and Chiral Specificity of Oxidovanadium Drugs with Lysozyme through Theoretical Calculations. Inorganic Chemistry, 2017, 56, 12938-12951.	1.9	40
51	A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies. Chemical Science, 2017, 8, 8373-8383.	3.7	30
52	Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chemical Science, 2017, 8, 7228-7235.	3.7	69
53	Computing the arrows of chemical reactions. ChemTexts, 2017, 3, 1.	1.0	9
54	The Origin of Antiâ€Markovnikov Regioselectivity in Alkene Hydroamination Reactions Catalyzed by [Rh(DPEphos)] ⁺ . Chemistry - A European Journal, 2016, 22, 9311-9320.	1.7	28

#	Article	IF	CITATIONS
55	Silver(I)â€Catalyzed Addition of Phenols to Alkyne Cobalt Cluster Stabilized Carbocations. Chemistry - A European Journal, 2016, 22, 9015-9023.	1.7	8
56	Acid Activation in Phenyliodine Dicarboxylates: Direct Observation, Structures, and Implications. Journal of the American Chemical Society, 2016, 138, 12747-12750.	6.6	127
57	Platinum(0)-mediated C–O bond activation of ethers via an SN2 mechanism. Dalton Transactions, 2016, 45, 18842-18850.	1.6	4
58	New Insights into the Reactivity of Cisplatin with Free and Restrained Nucleophiles: Microsolvation Effects and Base Selectivity in Cisplatin–DNA Interactions. ChemPhysChem, 2016, 17, 3932-3947.	1.0	10
59	Mechanistic implications of the enantioselective addition of alkylzinc reagents to aldehydes catalyzed by nickel complexes with \hat{l}_{\pm} -amino amide ligands. Organic and Biomolecular Chemistry, 2016, 14, 11125-11136.	1.5	7
60	NHâ€Heterocyclic Aryliodonium Salts and their Selective Conversion into <i>N</i> 1â€Arylâ€5â€iodoimidazoles. Angewandte Chemie - International Edition, 2016, 55, 7152-7156.	7.2	48
61	First-Principles Molecular Dynamics Studies of Organometallic Complexes and Homogeneous Catalytic Processes. Accounts of Chemical Research, 2016, 49, 1271-1278.	7.6	64
62	Chapter 15. Enzyme Design. RSC Theoretical and Computational Chemistry Series, 2016, , 481-521.	0.7	1
63	Realistic Simulation of Organometallic Reactivity in Solution by Means of First-Principles Molecular Dynamics. Structure and Bonding, 2015, , 81-106.	1.0	7
64	Mechanistic Insight into the Facilitation of Î²â€Łactam Fragmentation through Metal Assistance. Chemistry - A European Journal, 2015, 21, 16781-16785.	1.7	25
65	Hydroamination of C–C Multiple Bonds with Hydrazine Catalyzed by N-Heterocyclic Carbene–Gold(I) Complexes: Substrate and Ligand Effects. ACS Catalysis, 2015, 5, 815-829.	5.5	49
66	Ketone Hydrogenation with Iridium Complexes with "non N–H―Ligands: The Key Role of the Strong Base. ACS Catalysis, 2015, 5, 4368-4376.	5.5	29
67	Rutheniumâ€Catalyzed Oxidative Coupling of Primary Amines with Internal Alkynes through CH Bond Activation: Scope and Mechanistic Studies. Chemistry - A European Journal, 2015, 21, 8626-8636.	1.7	38
68	Azole Assisted C–H Bond Activation Promoted by an Osmium-Polyhydride: Discerning between N and NH. Organometallics, 2015, 34, 1898-1910.	1.1	29
69	Toward the Computational Design of Artificial Metalloenzymes: From Protein–Ligand Docking to Multiscale Approaches. ACS Catalysis, 2015, 5, 2469-2480.	5.5	51
70	Orbitalâ€Like Motion of Hydride Ligands around Lowâ€Coordinate Metal Centers. Angewandte Chemie - International Edition, 2014, 53, 14158-14161.	7.2	14
71	Palladium monophosphine Pd(PPh ₃): is it really accessible in solution?. Chemical Communications, 2014, 50, 661-663.	2.2	34
72	Selective Catalytic Deuterium Labeling of Alcohols during a Transfer Hydrogenation Process of Ketones Using D2O as the Only Deuterium Source. Theoretical and Experimental Demonstration of a Ru–H/D+Exchange as the Key Step. ACS Catalysis, 2014, 4, 1040-1053.	5.5	44

#	Article	IF	CITATIONS
73	Reactivity of Coordinatively Unsaturated Bis(N-heterocyclic carbene) Pt(II) Complexes toward H ₂ . Crystal Structure of a 14-Electron Pt(II) Hydride Complex. Inorganic Chemistry, 2014, 53, 4257-4268.	1.9	25
74	Unravelling novel synergies between organometallic and biological partners: a quantum mechanics/molecular mechanics study of an artificial metalloenzyme. Journal of the Royal Society Interface, 2014, 11, 20140090.	1.5	10
75	Challenges in modelling homogeneous catalysis: new answers from ab initio molecular dynamics to the controversy over the Wacker process. Chemical Society Reviews, 2014, 43, 4940-4952.	18.7	65
76	Structural, Kinetic, and Docking Studies of Artificial Imine Reductases Based on Biotin–Streptavidin Technology: An Induced Lock-and-Key Hypothesis. Journal of the American Chemical Society, 2014, 136, 15676-15683.	6.6	75
77	A stable, mononuclear, cationic Pt(<scp>iii</scp>) complex stabilised by bulky N-heterocyclic carbenes. Chemical Communications, 2014, 50, 1299-1301.	2.2	21
78	Synthesis, Structure, and Catalytic Applications for <i>ortho</i> - and <i>meta</i> -Carboranyl Based NBN Pincer-Pd Complexes. Inorganic Chemistry, 2014, 53, 9284-9295.	1.9	57
79	On the Road to MM′X Polymers: Redox Properties of Heterometallic Ni···Pt Paddlewheel Complexes. Inorganic Chemistry, 2014, 53, 10553-10562.	1.9	6
80	Counteranion-Dependent Reaction Pathways in the Protonation of Cationic Ruthenium–Vinylidene Complexes. Organometallics, 2014, 33, 2549-2560.	1.1	8
81	Computational Insights on an Artificial Imine Reductase Based on the Biotin–Streptavidin Technology. ACS Catalysis, 2014, 4, 833-842.	5.5	27
82	The use of localised orbitals for the bonding and mechanistic analysis of organometallic compounds. Dalton Transactions, 2014, 43, 11145.	1.6	42
83	Assessing protein-ligand docking for the binding of organometallic compounds to proteins. Journal of Computational Chemistry, 2014, 35, 192-198.	1.5	22
84	The Transmetalation Process in Suzuki–Miyaura Reactions: Calculations Indicate Lower Barrier via Boronate Intermediate. ChemCatChem, 2014, 6, 3132-3138.	1.8	68
85	Coordinatively Unsaturated T-Shaped Platinum(II) Complexes Stabilized by Small N-Heterocyclic Carbene Ligands. Synthesis and Cyclometalation. Organometallics, 2014, 33, 3746-3756.	1.1	22
86	Computational Perspective on Pd-Catalyzed C–C Cross-Coupling Reaction Mechanisms. Accounts of Chemical Research, 2013, 46, 2626-2634.	7.6	306
87	Mechanistic Studies on the Pd-Catalyzed Vinylation of Aryl Halides with Vinylalkoxysilanes in Water: The Effect of the Solvent and NaOH Promoter. Journal of the American Chemical Society, 2013, 135, 13749-13763.	6.6	46
88	Speciation of [Cp* ₂ M ₂ O ₅] in Polar and Donor Solvents. Chemistry - A European Journal, 2013, 19, 3969-3985.	1.7	3
89	Counteranion and Solvent Assistance in Ruthenium-Mediated Alkyne to Vinylidene Isomerizations. Inorganic Chemistry, 2013, 52, 8919-8932.	1.9	36
90	Solution dynamics of agostic interactions in T-shaped Pt(ii) complexes from ab initio molecular dynamics simulations. Dalton Transactions, 2013, 42, 12165.	1.6	25

#	Article	IF	Citations
91	Introducing Copper as Catalyst for Oxidative Alkane Dehydrogenation. Journal of the American Chemical Society, 2013, 135, 3887-3896.	6.6	89
92	Mechanistic Intricacies of Goldâ€Catalyzed Intermolecular Cycloadditions between Allenamides and Dienes. Chemistry - A European Journal, 2013, 19, 15248-15260.	1.7	57
93	True and masked three-coordinate T-shaped platinum(II) intermediates. Beilstein Journal of Organic Chemistry, 2013, 9, 1352-1382.	1.3	55
94	Mechanistic Exploration of the Pd-Catalyzed Copper-Free Sonogashira Reaction. ACS Catalysis, 2012, 2, 135-144.	5.5	103
95	Ptll as a proton shuttle during C–H bond activation in the Shilov process. Chemical Communications, 2012, 48, 1979.	2.2	26
96	Rearrangement of Tridentate [OSO]-Type Ligands and Migratory Insertion Reaction Mechanisms in Cyclopentadienyl Tantalum Complexes. Organometallics, 2012, 31, 7052-7062.	1.1	8
97	Cobalt-Catalyzed Vinylation of Aromatic Halides Using \hat{I}^2 -Halostyrene: Experimental and DFT Studies. Journal of Organic Chemistry, 2012, 77, 5056-5062.	1.7	49
98	Experimental and Theoretical Studies of the Hydrogenation of \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Acids by an $18 < i > e < /i > Hydride Carbonylniobocene Complex. Organometallics, 2012, 31, 5177-5184.$	1.1	8
99	Coordination Chemistry of New Chiral P,N Ferrocenyl Ligands with Half-Sandwich Ruthenium(II), Rhodium(III), and Iridium(III) Complexes. Organometallics, 2012, 31, 6669-6680.	1.1	25
100	Characterization of a Paramagnetic, Mononuclear Pt(III)–Alkyl Complex Intermediate in Carbon–Halogen Bond Coupling Reactions. Journal of the American Chemical Society, 2012, 134, 15261-15264.	6.6	29
101	Imidazole Based Ruthenium(IV) Complexes as Highly Efficient Bifunctional Catalysts for the Redox Isomerization of Allylic Alcohols in Aqueous Medium: Water as Cooperating Ligand. ACS Catalysis, 2012, 2, 2087-2099.	5.5	55
102	Breaking C–F Bonds via Nucleophilic Attack of Coordinated Ligands: Transformations from C–F to C–X Bonds (X= H, N, O, S). Organometallics, 2012, 31, 1245-1256.	1.1	110
103	Hydrogen–deuterium exchange in hydride chemistry: Dihydrogen bonded complexes as key intermediates. Computational and Theoretical Chemistry, 2012, 998, 129-140.	1.1	18
104	Computational insights on the possibility of tri-coordinated cisplatinated adducts with protein models. Journal of Inorganic Biochemistry, 2012, 117, 230-236.	1.5	4
105	Tuning Nâ€Heterocyclic Carbenes in Tâ€Shaped Pt ^{II} Complexes for Intermolecular CH Bond Activation of Arenes. Angewandte Chemie - International Edition, 2012, 51, 3936-3939.	7.2	48
106	The Nature of [PdCl ₂ (C ₂ H ₄)(H ₂ O)] as an Active Species in the Wacker Process: New Insights from Ab Initio Molecular Dynamics Simulations. Chemistry - A European Journal, 2012, 18, 5612-5619.	1.7	31
107	Highly Efficient Redox Isomerisation of Allylic Alcohols Catalysed by Pyrazoleâ€Based Ruthenium(IV) Complexes in Water: Mechanisms of Bifunctional Catalysis in Water. Chemistry - A European Journal, 2012, 18, 7749-7765.	1.7	68
108	Directionality of Dihydrogen Bonds: The Role of Transition Metal Atoms. ChemPhysChem, 2012, 13, 2677-2687.	1.0	22

#	Article	IF	CITATIONS
109	Incorporation of Manganese Complexes into Xylanase: New Artificial Metalloenzymes for Enantioselective Epoxidation. ChemBioChem, 2012, 13, 240-251.	1.3	72
110	A Versatile Ru Catalyst for the Asymmetric Transfer Hydrogenation of Both Aromatic and Aliphatic Sulfinylimines. Chemistry - A European Journal, 2012, 18, 1969-1983.	1.7	53
111	Basic ancillary ligands promote O–O bond formation in iridium-catalyzed water oxidation: A DFT study. Dalton Transactions, 2011, 40, 11241.	1.6	45
112	Theoretical study on intramolecular allene-diene cycloadditions catalyzed by PtCl2 and Au(i) complexes. Dalton Transactions, 2011, 40, 11095.	1.6	19
113	Nature of Bonding in Terminal Borylene, Alylene, and Gallylene Complexes of Vanadium and Niobium $[(\hat{l}\cdot\langle sup>5\langle/sup>-C\langle sub>5\langle/sub>H\langle sub>5\langle/sub>)(CO)\langle sub>3\langle/sub>M(ENR\langle sub>2\langle/sub>))]$ (M = V, Nb; E = B,) To Inorganic Chemistry, 2011, 50, 1402-1410.	j FJQq1 1	0,784314
114	Internal Alkyne Isomerization to Vinylidene versus Stable π-Alkyne: Theoretical and Experimental Study on the Divergence of Analogous Cp*Ru and TpRu Systems. Organometallics, 2011, 30, 4014-4031.	1.1	36
115	Gold-Catalyzed Cycloadditions Involving Allenes: Mechanistic Insights from Theoretical Studies. Topics in Current Chemistry, 2011, 302, 225-248.	4.0	33
116	What can molecular modelling bring to the design of artificial inorganic cofactors?. Faraday Discussions, 2011, 148, 137-159.	1.6	26
117	Cationic Intermediates in the Pd-Catalyzed Negishi Coupling. Kinetic and Density Functional Theory Study of Alternative Transmetalation Pathways in the Me–Me Coupling of ZnMe ₂ and <i>trans</i> -[PdMeCl(PMePh ₂) ₂]. Journal of the American Chemical Society. 2011. 133, 13519-13526.	6.6	69
118	Theoretical Evaluation of Phosphine Effects in Cross-Coupling Reactions. Catalysis By Metal Complexes, 2011, , 57-84.	0.6	12
119	The importance of conformational search: a test case on the catalytic cycle of the Suzuki–Miyaura cross-coupling. Theoretical Chemistry Accounts, 2011, 128, 639-646.	0.5	67
120	Gold <i>versus</i> Silverâ€Catalyzed Intermolecular Hydroaminations of Alkenes and Dienes. Advanced Synthesis and Catalysis, 2011, 353, 3451-3466.	2.1	44
121	Do Metalâ«â«Water Hydrogen Bonds Hold in Solution? Insight from Ab Initio Molecular Dynamics Simulations. ChemPhysChem, 2011, 12, 1666-1668.	1.0	22
122	Acid–Base Interaction between Transitionâ€Metal Hydrides: Dihydrogen Bonding and Dihydrogen Evolution. Angewandte Chemie - International Edition, 2011, 50, 1367-1370.	7.2	50
123	Hydroamination of Alkynes with Ammonia: Unforeseen Role of the Gold(I) Catalyst. Angewandte Chemie - International Edition, 2011, 50, 11147-11151.	7.2	67
124	Solventâ€Dependent Dihydrogen/Dihydride Stability for [Mo(CO)(Cp*)H ₂ (PMe ₃) ₂] ⁺ [BF ₄] ^{â^²} Determined by Multiple Solventâ<â<â <anionâ<â<â<cation -="" 16,="" 189-201.<="" 2010,="" a="" chemistry="" eur="" interactions.="" journal,="" nonâ€covalent="" td=""><td>opean</td><td>31</td></anionâ<â<â<cation>	opean	31
125	A Computational Study of the Olefin Epoxidation Mechanism Catalyzed by Cyclopentadienyloxidomolybdenum(VI) Complexes. Chemistry - A European Journal, 2010, 16, 2147-2158.	1.7	84
126	The Wacker Process: Inner―or Outer‧phere Nucleophilic Addition? New Insights from Ab Initio Molecular Dynamics. Chemistry - A European Journal, 2010, 16, 8738-8747.	1.7	55

#	Article	IF	Citations
127	Palladium Round Trip in the Negishi Coupling of <i>trans</i> à€{PdMeCl(PMePh ₂) ₂] with ZnMeCl: An Experimental and DFT Study of the Transmetalation Step. Chemistry - A European Journal, 2010, 16, 8596-8599.	1.7	76
128	Concerted and Stepwise Mechanisms in Metalâ€Free and Metalâ€Assisted [4+3] Cycloadditions Involving Allyl Cations. Chemistry - A European Journal, 2010, 16, 12147-12157.	1.7	53
129	Linear versus bent bonding in metal-phosphinidene complexes: Theoretical studies of the electrophilic Organometallic Chemistry, 2010, 695, 206-214.	0.8	15
130	Inner- and Outer-Sphere Hydrogenation Mechanisms: A Computational Perspective. Advances in Inorganic Chemistry, 2010, 62, 231-260.	0.4	34
131	Mechanistic Comparison of Acid- and Gold(I)-Catalyzed Nucleophilic Addition Reactions to Olefins. Organometallics, 2010, 29, 5919-5926.	1.1	46
132	Intramolecular $\ddot{I}f$ -Bond Metathesis/Protonolysis on Zirconium(IV) and Hafnium(IV) Pyridylamido Olefin Polymerization Catalyst Precursors: Exploring Unexpected Reactivity Paths. Inorganic Chemistry, 2010, 49, 6811-6813.	1.9	21
133	Proton-Transfer Reactions to Half-Sandwich Ruthenium Trihydride Complexes Bearing Hemilabile P,N Ligands: Experimental and Density Functional Theory Studiesâ€Dedicated to Prof. Serafin Bernal in recognition of his contribution to inorganic chemistry, on the occasion of his retirement. Inorganic Chemistry, 2010, 49, 6035-6057.	1.9	28
134	Comparative DFT Analysis of Ligand and Solvent Effects on the Mechanism of H ₂ Activation in Water Mediated by Half-Sandwich Complexes [Cp′Ru(PTA) ₂ Cl] (Cp′ =) Tj ETQq0 0 0 rgBT /	Overlock :	10 Tf 50 462
135	Organometallics, 2010, 29, 5121-5131. Mechanism for Hydride-Assisted Rearrangement from Ethylidene to Ethylene in Iridium Cationic Complexes. Organometallics, 2010, 29, 2040-2045.	1.1	28
136	Neutral Transition Metal Hydrides as Acids in Hydrogen Bonding and Proton Transfer: Media Polarity and Specific Solvation Effects. Journal of the American Chemical Society, 2010, 132, 11234-11246.	6.6	35
137	Reaction Mechanism of the Gold(I)-Catalyzed Addition of Phenols to Olefins: A Concerted Process Accelerated by Phenol and Water. Organometallics, 2010, 29, 3252-3260.	1.1	67
138	Dinuclear Dicyclopentadienyl Titanium Complexes with Bridging Cyclopentadienylsiloxo Ligands. Organometallics, 2010, 29, 642-655.	1.1	6
139	Mechanistic Studies on the interaction of $[(\hat{l}^2 < \sup) 3 < \sup) [NP < \sup) 3 < \sup] 4 < \sup] 4 < \sup] 5 < \sup] 6 < \sup] 6 < \sup] 7 < \sup] 7 < \sup] 8 < \sup] 8 < \sup] 8 < \sup] 8 < \sup] 9 < $	1.9	18
140	4343-4354. Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings. Chemistry - A European Journal, 2009, 15, 924-935.	1.7	18
141	Goldâ€Catalyzed [4C+3C] Intramolecular Cycloaddition of Allenedienes: Synthetic Potential and Mechanistic Implications. Chemistry - A European Journal, 2009, 15, 3336-3339.	1.7	138
142	Experimental and Computational Studies on the Iridium Activation of Aliphatic and Aromatic CH Bonds of Alkyl Aryl Ethers and Related Molecules. Chemistry - A European Journal, 2009, 15, 9034-9045.	1.7	26
143	Synthetic, Mechanistic, and Theoretical Studies on the Generation of Iridium Hydride Alkylidene and Iridium Hydride Alkene Isomers. Chemistry - A European Journal, 2009, 15, 9046-9057.	1.7	25
144	Selective Bâ€"H versus Nâ€"H Bond Activation in Ammonia Borane by [Ir(dppm) ₂]OTf. European Journal of Inorganic Chemistry, 2009, 2009, 3055-3059.	1.0	44

#	Article	IF	CITATIONS
145	The role of amide ligands in the stabilization of Pd(II) tricoordinated complexes: is the Pd–NR2 bond order single or higher?. Theoretical Chemistry Accounts, 2009, 123, 75-84.	0.5	10
146	Mechanistic evaluation of metal-catalyzed hydrogen-transfer processes: The Shvo catalyst as an example of computational unravelling. Computational and Theoretical Chemistry, 2009, 903, 123-132.	1.5	41
147	Protonation of transition-metal hydrides: a not so simple process. Chemical Society Reviews, 2009, 38, 957.	18.7	99
148	Why Is the Suzukiâ^'Miyaura Cross-Coupling of sp ³ Carbons in α-Bromo Sulfoxide Systems Fast and Stereoselective? A DFT Study on the Mechanism. Journal of Organic Chemistry, 2009, 74, 4049-4054.	1.7	54
149	Experimental and Computational Study of the Bonding Properties of Mixed Bisâ^'Ylides of Phosphorus and Sulfur. Inorganic Chemistry, 2009, 48, 6823-6834.	1.9	16
150	Linear M≡E—Me Versus Bent M—E—Me: Bonding Analysis in Heavier Metal-ylidyne Complexes [(Cp)(CO) ₂ M≡EMe] and Metallo-ylidenes [(Cp)(CO) ₃ Mâ^'EMe] (M = Cr, Mo, W; E =) IjŒTQq(0 (410) rgBT /C
151	The Nature of Mâ^B Versus Mâ•B Bonds in Cationic Terminal Borylene Complexes: Structure and Energy Analysis in the Borylene Complexes [(η5-C5H5)(CO)2M{B(η5-C5Me5)}]+, [(η5-C5H5)(CO)2M(BMes)]+, and [(η5-C5H5)(CO)2M(BNMe2)]+ (M = Fe, Ru, Os). Organometallics, 2009, 28, 6442-6449.	1.1	21
152	Behavior of Pâ^'Pt and Pâ^'Pd Bonds in Phosphido Complexes toward Electrophilic Fragments. Inorganic Chemistry, 2009, 48, 7679-7690.	1.9	23
153	Proton-Transfer and H2-Elimination Reactions of Trimethylamine Alane: Role of Dihydrogen Bonding and Lewis Acidâ°'Base Interactions. Inorganic Chemistry, 2009, 48, 3667-3678.	1.9	25
154	Gold(I)-Catalyzed Intermolecular Oxyarylation of Alkynes: Unexpected Regiochemistry in the Alkylation of Arenes. Organic Letters, 2009, 11, 4906-4909.	2.4	148
155	Gold-Catalyzed [4C+2C] Cycloadditions of Allenedienes, including an Enantioselective Version with New Phosphoramidite-Based Catalysts: Mechanistic Aspects of the Divergence between [4C+3C] and [4C+2C] Pathways. Journal of the American Chemical Society, 2009, 131, 13020-13030.	6.6	258
156	Investigation of the [Cp*Mo(PMe ₃) ₃ H] ^{<i>n</i>+} (<i>n</i> >= 0, 1) Redox Pair: Dynamic Processes on Very Different Time Scales. Inorganic Chemistry, 2009, 48, 209-220.	1.9	26
157	Dihydrogen complexes: striking effect of ion pairing to BF4â^' on the rotation of coordinated dihydrogen and the 19F relaxation time. Chemical Communications, 2009, , 4563.	2.2	5
158	Aromatic C–F activation by complexes containing the {Pt2S2} core via nucleophilic substitution: a combined experimental and theoretical study. Dalton Transactions, 2009, , 5980.	1.6	24
159	Detection of platinum dihydride bisphosphine complexes and studies of their reactivity through para-hydrogen-enhanced NMR methods. Magnetic Resonance in Chemistry, 2008, 46, S107-S114.	1.1	8
160	When Are Tricoordinated Pd ^{II} Species Accessible? Stability Trends and Mechanistic Consequences. Chemistry - A European Journal, 2008, 14, 8986-8994.	1.7	50
161	Effect of the Nature of the Metal Atom on Hydrogen Bonding and Proton Transfer to [Cp*MH ₃ (dppe)]: Tungsten versus Molybdenum. Chemistry - A European Journal, 2008, 14, 9921-9934.	1.7	28
162	DFT/MM Study on Copper atalyzed Cyclopropanation – Enantioselectivity with No Enthalpy Barrier. European Journal of Organic Chemistry, 2008, 2008, 5614-5621.	1.2	18

#	Article	IF	CITATIONS
163	New chiral tetraaza ligands for the efficient enantioselective addition of dialkylzinc to aromatic aldehydes. Tetrahedron, 2008, 64, 9717-9724.	1.0	34
164	Intermolecular HH Vibrations of Dihydrogen Bonded Complexes H ₃ EH ^{â^'} ···HOR in the Low-Frequency Region: Theory and IR Spectra. Journal of Physical Chemistry A, 2008, 112, 8198-8204.	1.1	15
165	A DFT Study on the Mechanism of Palladium-Catalyzed Alkyne Hydrogenation: Neutral versus Cationic Pathways. Organometallics, 2008, 27, 43-52.	1.1	23
166	The Reaction Mechanism of the Hydroamination of Alkenes Catalyzed by Gold(I)â^'Phosphine:  The Role of the Counterion and the N-Nucleophile Substituents in the Proton-Transfer Step. Journal of the American Chemical Society, 2008, 130, 853-864.	6.6	197
167	Csp3–F bond activation by nucleophilic attack of the {Pt2S2} core assisted by non-covalent interactions. Chemical Communications, 2008, , 3130.	2.2	26
168	Utilisation of an η3-allyl hydride complex, formed by UV irradiation, as a controlled source of 16-electron (η5-C5Me5)Rh(CH2HMe). Chemical Communications, 2008, , 4834.	2.2	5
169	Regioselectivity in the Ligand-Assisted Addition of Vinylmagnesium Bromide: An Experimental and Theoretical Study on the \hat{I}^3 -Alkoxycyclobutenone Model. Journal of Organic Chemistry, 2008, 73, 6521-6533.	1.7	7
170	Influence of the Nature of the Ligand on Dirhodium(II) Carbene Species: A Theoretical Analysis. Organometallics, 2008, 27, 2873-2876.	1.1	22
171	Regioselective Ortho Palladation of Stabilized Iminophosphoranes in Exo Positions: Scope, Limitations, and Mechanistic Insights. Organometallics, 2008, 27, 2929-2936.	1.1	41
172	Theoretical Analysis of the Hydrogen-Transfer Reaction to Câ•N, Câ•€, and C≡C Bonds Catalyzed by Shvo's Ruthenium Complex. Organometallics, 2008, 27, 4854-4863.	1.1	44
173	Hydrogen Transfer to Ketones Catalyzed by Shvo's Ruthenium Hydride Complex:  A Mechanistic Insight. Organometallics, 2007, 26, 4135-4144.	1.1	130
174	Highly Enantioselective Electrophilic Amination and Michael Addition of Cyclic β-Ketoesters Induced by Lanthanides and (S,S)-ip-pybox: The Mechanism⊥. Journal of Organic Chemistry, 2007, 72, 2077-2087.	1.7	94
175	Coordinatively unsaturated Semisandwich Complexes of Ruthenium with Phosphinoamine Ligands and Related Species:  A Complex Containing (⟨i⟩R⟨ i⟩,⟨i⟩R⟨ i⟩,⟨i⟩P⟨ i⟩.1,2-Bis((diisopropylphosphino)amino)cyclohexane in a New Coordination Form [º⟨sup⟩3⟨ sup⟩⟨i⟩P⟨ i⟩,⟨i⟩P⟨ i⟩‬,⟨i⟩N⟨ i⟩.ê⟨sup⟩2⟨ sup⟩-⟨i⟩P⟨ i⟩,⟨i⟩N⟨ i⟩. Inorganic Chemistry, 2007, 46,	1.9	34
176	Mechanism of Formation of Silver <i>N</i> Heterocyclic Carbenes Using Silver Oxide:  A Theoretical Study. Organometallics, 2007, 26, 6170-6183.	1.1	58
177	Water-Assisted Hâ^'H Bond Splitting Mediated by [CpRu(PTA)2Cl] (PTA=1,3,5-triaza-7-phosphaadamantane). A DFT Analysis. Organometallics, 2007, 26, 3289-3296.	1.1	57
178	Crucial Role of Anions on the Deprotonation of the Cationic Dihydrogen Complex trans-[FeH(η2·H2)(dppe)2]+. Journal of the American Chemical Society, 2007, 129, 6608-6618.	6.6	51
179	Nature of Cp*MoO2+in Water and Intramolecular Proton-Transfer Mechanism by Stopped-Flow Kinetics and Density Functional Theory Calculations. Inorganic Chemistry, 2007, 46, 4103-4113.	1.9	39
180	Selective Cyclopalladation of R3PNCH2Aryl Iminophosphoranes. Experimental and Computational Study. Inorganic Chemistry, 2007, 46, 10133-10142.	1.9	41

#	Article	IF	CITATIONS
181	Coordination and Rupture of Methyl C(sp ³)â^'H Bonds in Osmiumâ^'Polyhydride Complexes with δAgostic Interaction. Organometallics, 2007, 26, 5140-5152.	1.1	51
182	Reaction Chemistry of Complexes Containing PtH, PtSH, or PtS Fragments: From Their Apparent Simplicity to the Maze of Reactions Underlying Their Interconversion. Chemistry - A European Journal, 2007, 13, 1047-1063.	1.7	17
183	The Role of Water in the Stereoselective Hydrogenation of 1,2-Diphenylacetylene Catalyzed by the Water-Soluble [{RuCl2(mtppms)2}2]. European Journal of Inorganic Chemistry, 2007, 2007, 2879-2889.	1.0	14
184	C–S Bond Activation and Partial Hydrogenation of Thiophene by a Dinuclear Trihydride Platinum Complex. European Journal of Inorganic Chemistry, 2007, 2007, 5707-5719.	1.0	17
185	Coordination Modes and Hydride Exchange Dynamics in Transition Metal Tetrahydroborate Complexes., 2007,, 149-202.		43
186	Proton-Transfer and H2-Elimination Reactions of Main-Group Hydrides EH4-(E = B, Al, Ga) with Alcohols. Inorganic Chemistry, 2006, 45, 3086-3096.	1.9	49
187	A Critical Analysis of the Cyclic and Open Alternatives of the Transmetalation Step in the Stille Cross-Coupling Reaction. Journal of the American Chemical Society, 2006, 128, 14571-14578.	6.6	100
188	Palladium-Catalyzed Hydrogenation:Â Detection of Palladium Hydrides. A Joint Study Using Para-Hydrogen-Enhanced NMR Spectroscopy and Density Functional Theory. Journal of the American Chemical Society, 2006, 128, 9596-9597.	6.6	33
189	Silyl, Hydrido Silylene or Alternative Bonding Modes:Â The Many Possible Structures of [(C5H5)(PH3)IrX]+(X = SiHR2and SiR3; R = H, CH3, SiH3, and Cl). Organometallics, 2006, 25, 4748-4755.	1.1	11
190	The Active Role of the Water Solvent in the Regioselective CO Hydrogenation of Unsaturated Aldehydes by [RuH2(mtppms)x] in Basic Media. Organometallics, 2006, 25, 5010-5023.	1.1	52
191	Dihydrogen to Dihydride Isomerization Mechanism in [(C5Me5)FeH2(Ph2PCH2CH2PPh2)]+ through the Experimental and Theoretical Analysis of Kinetic Isotope Effects. Inorganic Chemistry, 2006, 45, 10248-10262.	1.9	30
192	Intermolecular Hydrogen Bonding between Neutral Transition Metal Hydrides (Î-5-C5H5)M(CO)3H (M =) Tj ETQq	0 0 0 rgB1	Qverlock 10
193	Mixed Pâ^'N and Asâ^'N Bis-Ylide Palladium Complexes:Â Cooperative Intramolecular Interactions, Conformational Preferences, and Câ^'H Bond Activationsâ€. Organometallics, 2006, 25, 4653-4664.	1.1	31
194	Câ°'H Oxidative Addition of Bisimidazolium Salts to Iridium and Rhodium Complexes, and N-Heterocyclic Carbene Generation. A Combined Experimental and Theoretical Study. Organometallics, 2006, 25, 1120-1134.	1.1	96
195	Palladium Complexes of a Phosphorus Ylide with Two Stabilizing Groups: Synthesis, Structure, and DFT Study of the Bonding Modesâ€. Inorganic Chemistry, 2006, 45, 6803-6815.	1.9	49
196	Theoretical Investigation of the Selective CC Hydrogenation of Unsaturated Aldehydes Catalyzed by [{RuCl2(mtppms)2}2] in Acidic Media. Organometallics, 2006, 25, 862-872.	1.1	27
197	Aliphatic C–X (X=halogen) bond activation by transition metal complexes containing the {Pt2S2} core: A theoretical study of the reaction mechanism. Inorganica Chimica Acta, 2006, 359, 3736-3744.	1.2	12
198	Computational study of the transmetalation process in the Suzuki–Miyaura cross-coupling of aryls. Journal of Organometallic Chemistry, 2006, 691, 4459-4466.	0.8	140

#	Article	IF	CITATIONS
199	Origin of Stereoinduction by Chiral Aminophosphane Phosphinite Ligands in Enantioselective Catalysis: Asymmetric Hydroformylation. Chemistry - A European Journal, 2006, 12, 1457-1467.	1.7	36
200	Chemical and Constitutional Influences in the Self-Assembly of Functional Supramolecular Hydrogen-Bonded Nanoscopic Fibres. Chemistry - A European Journal, 2006, 12, 9161-9175.	1.7	46
201	Hydrogen Bonding and Proton Transfer to the Trihydride Complex [Cp*MoH3(dppe)]: IR, NMR, and Theoretical Investigations. European Journal of Inorganic Chemistry, 2006, 2006, 2192-2209.	1.0	32
202	A DFT study on the relative affinity for oxygen of the \hat{l}_{\pm} and \hat{l}^{2} subunits of hemoglobin. Journal of Computational Chemistry, 2006, 27, 1446-1453.	1.5	10
203	A QM/MM Study of the Asymmetric Dihydroxylation of Terminal Aliphaticn-Alkenes with OsO4â(DHQD)2PYDZ: Enantioselectivity as a Function of Chain Length. Chemistry - A European Journal, 2005, 11, 1017-1029.	1.7	24
204	Experimental and Computational Studies of Hydrogen Bonding and Proton Transfer to [Cp*Fe(dppe)H]. Chemistry - A European Journal, 2005, 11, 873-888.	1.7	58
205	Influence of the terminal ligands on the redox properties of the $\{Pt2(\hat{A}\mu-S)2\}$ core in $[Pt2(Ph2X(CH2)2XPh2)2(\hat{A}\mu-S)2](X = P \text{ or } As)$ complexes and on their reactivity towards metal centres, protic acids and organic electrophiles. Dalton Transactions, 2005, , 2742.	1.6	28
206	Determination of the Temperature Dependence of the Hâ^'D Spinâ^'Spin Coupling Constant and the Isotope Effect on the Proton Chemical Shift for the Compressed Dihydride Complex [Cp*Ir(Pâ^'P)H2]2+. Journal of the American Chemical Society, 2005, 127, 5632-5640.	6.6	37
207	Self-Assembly of Mercaptaneâ^'Metallacarborane Complexes by an Unconventional Cooperative Effect:Â A Câ^'H··ÂSâ^'H··Ĥâ^'B Hydrogen/Dihydrogen Bond Interaction. Journal of the American Chemical Society, 2005, 127, 15976-15982.	6.6	105
208	A Measureable Equilibrium between Iridium Hydride Alkylidene and Iridium Hydride Alkene Isomers. Angewandte Chemie - International Edition, 2004, 43, 3708-3711.	7.2	44
209	A Novel Route to Multinuclear d8 Metalâ^'Chalcogen Compounds with Nuclearity Control. European Journal of Inorganic Chemistry, 2004, 2004, 3223-3227.	1.0	11
210	Extending The Reaction Landscape of the {Pt(μâ€S) 2 Pt} Core: From Metal Centers to Nonâ€Metallic Electrophiles. European Journal of Inorganic Chemistry, 2004, 2004, 3585-3599.	1.0	45
211	Elongated Dihydrogen Complexes: What Remains of the H—H Bond?. ChemInform, 2004, 35, no.	0.1	0
212	Chalcogenâ€"Chalcogen Bonds in Edge-Sharing Square-Planar d8 Complexes. Are They Possible?. ChemInform, 2004, 35, no.	0.1	0
213	Extending the Reaction Landscape of the $\{Pt(\hat{1}/4-S)2Pt\}$ Core: From Metal Centers to Non-Metallic Electrophiles. ChemInform, 2004, 35, no.	0.1	0
214	First Investigation of Non-Classical Dihydrogen Bonding between an Early Transition-Metal Hydride and Alcohols: IR, NMR, and DFT Approach. Chemistry - A European Journal, 2004, 10, 661-671.	1.7	50
215	Strong 1,4 P–O intramolecular interactions as a source of conformational preferences in α-stabilised phosphorus ylides. Part 2: metallic complexes. Inorganica Chimica Acta, 2004, 357, 1444-1456.	1.2	15
216	A computational study on the acceleration of the Prins reaction by indium trichloride. Comptes Rendus Chimie, 2004, 7, 885-893.	0.2	1

#	Article	IF	CITATIONS
217	Computational QM/MM study on the structure and energetics of species involved in the activation of the C–H and C–S bonds of thiophene by Cp*RhPMe3. New Journal of Chemistry, 2004, 28, 625-630.	1.4	24
218	Electrochemical and theoretical study of the redox properties of transition metal complexes with {Pt2S2} cores. Dalton Transactions, 2004, , 706-712.	1.6	10
219	Structural flexibility of formally d10 [M(biphosphinine)2]q complexesElectronic supplementary information (ESI) available: main geometrical parameters optimized for the structures whose energies are reported in Fig. 1. See http://www.rsc.org/suppdata/nj/b3/b316684h/. New Journal of Chemistry, 2004, 28, 838.	1.4	10
220	A dissociative mechanism for phosphine exchange in quadruply bonded bimetallic complexes. New Journal of Chemistry, 2004, , .	1.4	0
221	Synthesis and Characterization of PdllComplexes with Bis-Pyridinium and Isoquinolinium N-Ylides:Â Moderate CHÂ-Â-Â-OC Intramolecular Hydrogen Bonds as Source of Conformational Preferences. Inorganic Chemistry, 2004, 43, 7622-7635.	1.9	15
222	Neutron and X-ray Diffraction Studies and DFT Calculations of Asymmetric Bis(silyl) Niobocene Hydrides. Organometallics, 2004, 23, 2845-2847.	1.1	24
223	The Effect of the "Inert―Counteranions in the Deprotonation of the Dihydrogen Complextrans-[FeH(η2·H2)(dppe)2]+: Kinetic and Theoretical Studies. Journal of the American Chemical Society, 2004, 126, 2320-2321.	6.6	39
224	Synthesis and Properties of Compressed Dihydride Complexes of Iridium:Â Theoretical and Spectroscopic Investigations. Journal of the American Chemical Society, 2004, 126, 8813-8822.	6.6	79
225	Chalcogenâ^'Chalcogen Bonds in Edge-Sharing Square-Planar d8 Complexes. Are They Possible?. Inorganic Chemistry, 2004, 43, 3702-3714.	1.9	25
226	Preparation and Full Characterization of a Tetrahydride-bis(stannyl)-osmium(VI) Derivative. Organometallics, 2004, 23, 1453-1456.	1.1	14
227	Unusual Câ^'H Allylic Activation in the {Ptll(cod)} Fragment Bonded to a {Pt2(μ-S)2} Core. Organometallics, 2004, 23, 2522-2532.	1.1	16
228	Influence of the Cis Ligand on the Hâ^'H Separation and the Rotation Barrier of the Dihydrogen in Osmium-Elongated Dihydrogen Complexes Containing an Ortho-Metalated Ketoneâ€. Organometallics, 2004, 23, 3008-3015.	1.1	48
229	Unexpected Influence of the Counteranion in the \hat{I}^2 vs \hat{I}^2 3 Hapticity of Polydentate N-Donor Ligands in [RhI(N-ligand)L2]+ Complexes. Organometallics, 2004, 23, 5530-5539.	1.1	18
230	Elongated dihydrogen complexes: what remains of the H–H Bond?. Chemical Society Reviews, 2004, 33, 175-182.	18.7	178
231	Hydrogen bonding and proton transfer involving the trihydride complexes Cp*M(dppe)H3(M = Mo, W) and fluorinated alcohols: the competitive role of the hydride ligands and metal. Russian Chemical Bulletin, 2003, 52, 2679-2682.	0.4	13
232	Bent and Linear Forms of the $(\hat{1}\frac{1}{4}\text{-Oxo})$ bis[trichloroferrate(III)] Dianion: An Intermolecular Effectâ' Structural, Electronic and Magnetic Properties. European Journal of Inorganic Chemistry, 2003, 2003, 4187-4194.	1.0	10
233	Diradical versus Concerted Mechanisms for the Dihydroxylation of Protoanemonin by OsO4 and OsO4â^'NH3 â^' The Effect of the Base in the Reaction. European Journal of Organic Chemistry, 2003, 2003, 833-839.	1.2	8
234	The Evolution of [$\{Ph2P(CH2)nPPh2\}Pt(\hat{l}\frac{1}{4}-S)2Pt\{Ph2P(CH2)nPPh2\}\}$] (n=2, 3) Metalloligands in Protic Acids: A Cascade of Sequential Reactions. Chemistry - A European Journal, 2003, 9, 5023-5035.	1.7	38

#	Article	IF	CITATIONS
235	A DFT study of the magnetic properties and the iron–iron interaction in the Cp2Fe2(μ–η1–S2,μ–η2– Cp2Fe2(μ–(η2,η1)–S2)2 isomers of the Cp2Fe2S4 complex. Computational and Theoretical Chemistry, 2003 621, 113-118.	S2) and 5,1.5	2
236	Electronic against steric effects in distorted amides. Computational and Theoretical Chemistry, 2003, 632, 131-144.	1.5	22
237	Theoretical assessment on the viability of possible intermediates in the reaction mechanism of catalase and peroxidase models. Computational and Theoretical Chemistry, 2003, 632, 323-333.	1.5	4
238	Some critical issues in the application of quantum mechanics/molecular mechanics methods to the study of transition metal complexes. Faraday Discussions, 2003, 124, 429-441.	1.6	26
239	Ortho-CH Activation of Aromatic Ketones, Partially Fluorinated Aromatic Ketones, and Aromatic Imines by a Trihydride-Stannyl-Osmium(IV) Complex. Organometallics, 2003, 22, 3753-3765.	1.1	52
240	Preparation and Characterization of Osmiumâ^'Stannyl Polyhydrides:Â d4â^'d2Oxidative Addition of Neutral Molecules in a Late Transition Metal. Organometallics, 2003, 22, 2087-2096.	1.1	46
241	Density Functional Study on the Effect of the trans Axial Ligand of B12 Cofactors on the Heterolytic Cleavage of the Coâ [^] C Bond. Journal of Physical Chemistry B, 2003, 107, 306-315.	1.2	48
242	First X-ray Characterization and Theoretical Study of π-Alkyne, Alkynyl-Hydride, and Vinylidene Isomers for the Same Transition Metal Fragment [Cp*Ru(PEt3)2]+. Journal of the American Chemical Society, 2003, 125, 3311-3321.	6.6	90
243	Density Functional Study on the Mechanism of the Vanadium-Catalyzed Oxidation of Sulfides by Hydrogen Peroxide. Journal of Organic Chemistry, 2003, 68, 4265-4274.	1.7	57
244	Influence of Media and Homoconjugate Pairing on Transition Metal Hydride Protonation. An IR and DFT Study on Proton Transfer to CpRuH(CO)(PCy3). Journal of the American Chemical Society, 2003, 125, 7715-7725.	6.6	74
245	Experimental and Theoretical Studies of Bonding and Oxidative Addition of Germanes and Silanes, EH4-nPhn(E = Si, Ge;n= Oâ°'3), to Mo(CO)(diphosphine)2. The First Structurally Characterized Germane Ïf Complex. Organometallics, 2003, 22, 5307-5323.	1.1	68
246	Theoretical study of the reaction mechanism of the uncatalyzed epoxidation of alkenes by iodosylbenzeneElectronic supplementary information (ESI) available: B3LYP optimized geometries (Cartesian coordinates) and total energies for compounds 1 to 9. See http://www.rsc.org/suppdata/ni/b2/b203861g/. New Journal of Chemistry, 2003, 27, 811-817.	1.4	18
247	Why [CpW(CO)3]+ reduces H2 to dihydride. Chemical Communications, 2003, , 850.	2.2	7
248	Computational Methods for Homogeneous Catalysis. Catalysis By Metal Complexes, 2002, , 1-21.	0.6	5
249	Silyl, Hydrido-Silylene, or Other Bonding Modes:Â Some Unusual Structures of [(dhpe)Pt(SiHR2)]+(dhpe) Tj ETQq1 Calculations. Inorganic Chemistry, 2002, 41, 7105-7112.	1 0.7843 1.9	314 rgBT /0 28
250	Two- and Four-Electron Alkyne Ligands in Osmiumâ^'Cyclopentadienyl Chemistry: Consequences of the π⊥â†'M Interaction. Organometallics, 2002, 21, 305-314.	1.1	54
251	Diverse Evolution of [$\{Ph2P(CH2)nPPh2\}Pt(\hat{l}/4-S)2Pt\{Ph2P(CH2)nPPh2\}$] (n = 2, 3) Metalloligands in CH2Cl2. Inorganic Chemistry, 2002, 41, 3218-3229.	1.9	50
252	From chelating to bridging diphosphine ligands in quadruply-bonded bimetallic complexes: a non-dissociative phosphine exchange mechanism. New Journal of Chemistry, 2002, 26, 1118-1121.	1.4	6

#	ARTICLE (silyl) palladium(VI) or Palladium(II) with Î-2-Disilane Ligands? This work was supported by the	IF	Citations
253	DirecciÃ ³ n General de Enseñanza Superíor (DGES), grant PB98-1166-C02-01, and the Comissionat per a Universitats i Recerca (Generalitat de Catalunya), grant SGR99-0046. Computing resources at the Centre de Supercomputació de Catalunya (CESCA) and Centre de Paralâ‹lelisme de Barcelona (CEPBA) were made available by the Comissió Interdepartamental per a la Recerca i la Innovació Tecnològica	7.2	35
254	(CIRIT) and the Unive, Angewandte Chemie - International Edition, 2002, 41, 1956. First Evidence of Fast SHâ‹â‹â‹â‹S Proton Transfer in a Transition Metal Complex. Angewandte Chemie - International Edition, 2002, 41, 2776-2778.	7.2	23
255	Ab initio calculations predict a very low barrier for the rotation of the axial ligand in Fe(P)(Im). Chemical Physics Letters, 2002, 353, 379-382.	1.2	10
256	DFT study of the structural and redox properties of [Cp2Fe2S4]q complexes (q = 0, \pm 2, \pm 1 and \pm 2). New Journal of Chemistry, 2001, 25, 611-617.	1.4	13
257	A Density Functional Study on the Effect of the Trans Axial Ligand of Cobalamin on the Homolytic Cleavage of the Coâ^'C Bond. Journal of Physical Chemistry B, 2001, 105, 7564-7571.	1.2	74
258	Reactions of a Hexahydrideâ^'Osmium Complex with Aromatic Ketones: Câ^'H Activation versus Câ^'F Activation§. Organometallics, 2001, 20, 442-452.	1.1	88
259	Synthesis and Characterization of Mixed-Phosphine Osmium Polyhydrides:Â Hydrogen Delocalization in [OsH5P3]+Systems. Organometallics, 2001, 20, 5297-5309.	1.1	20
260	Strong 1,4-Pâ^'O Intramolecular Interactions as a Source of Conformational Preferences in α-Stabilized Phosphorus Ylides. Inorganic Chemistry, 2001, 40, 4913-4917.	1.9	32
261	Unexpectedly large basis set effects on the binding of O2to heme complexes. International Journal of Quantum Chemistry, 2001, 85, 100-108.	1.0	10
262	Formation and Stereochemistry of Octahedral Cationic Hydride-Azavinylidene Osmium(IV) Complexes. European Journal of Inorganic Chemistry, 2001, 2001, 2871.	1.0	13
263	Hybrid quantum mechanics/molecular mechanics studies of the active site of the blue copper proteins amicyanin and rusticyanin. Inorganica Chimica Acta, 2001, 324, 21-26.	1.2	30
264	Quantum mechanical phenomena in dihydrogen and polyhydride transition metal systems. , 2001, , 419-461.		0
265	Theoretical modeling of the heme group with a hybrid QM/MM method. Journal of Computational Chemistry, 2000, 21, 282-294.	1.5	39
266	A comparative study of DFT and traditional ab initio methodologies on the OsO4 molecule. International Journal of Quantum Chemistry, 2000, 77, 544-551.	1.0	9
267	Structural preferences of quadruply bonded bimetallic complexes. A DFT study of the chelated (\hat{l}_{\pm}) and bridged (\hat{l}^2) isomers in Mo2Cl4(H2P(CH2)nPH2)2 (n=1, 2). Inorganica Chimica Acta, 2000, 300-302, 837-845.	1.2	5
268	Theoretical characterisation of the origin of symmetry distortions in TpCuCl complexes. Inorganic Chemistry Communication, 2000, 3, 590-593.	1.8	6
269	Synthesis, Characterization, and Theoretical Study of Stable Hydrideâ^'Azavinylidene Osmium(IV) Complexes. Organometallics, 2000, 19, 3100-3108.	1.1	31
270	A Quantum Mechanics/Molecular Mechanics Study of the Highly Enantioselective Addition of Diethylzinc to Benzaldehyde Promoted by (R)-2-Piperidino-1,1,2-triphenylethanol. Journal of Organic Chemistry, 2000, 65, 7303-7309.	1.7	70

#	Article	IF	Citations
271	Structural Correlations and Conformational Preference in Edge-Sharing Binuclear d8Complexes with XR2Bridges. A Theoretical Study. Inorganic Chemistry, 2000, 39, 906-916.	1.9	16
272	Ligand Macrocycle Structural Effects on Copperâ^'Dioxygen Reactivity. Inorganic Chemistry, 2000, 39, 4059-4072.	1.9	116
273	Structure and Dynamics of [Nb(\hat{i} -5-C5H4SiMe3)2(\hat{i} -2-H2BR2)] (R2 = O2C6H4, C8H14, H2) Complexes. A Combined Experimental and Theoretical Study. Organometallics, 2000, 19, 3654-3663.	1.1	26
274	Transition Metal Polyhydrides:  From Qualitative Ideas to Reliable Computational Studies. Chemical Reviews, 2000, 100, 601-636.	23.0	341
275	Facile Synthesis of Alkynylâ^' and Vinylideneâ^'Niobocene Complexes. Unexpected η1-Vinylideneâ^'η2-Alkyne Isomerization. Organometallics, 2000, 19, 1749-1765.	1.1	32
276	A DVR analysis of some vibrational modes in the elongated dihydrogen complex [Ru(η2-H2)(C5H5)(H2PCH2PH2)]+. Chemical Physics, 1999, 241, 155-166.	0.9	17
277	Structure and internal rotation in quadruply bonded α-Mo2Cl4(P–P)2 complexes: a density functional theory study of the cis-Mo2Cl4(PH3)4 complex. Chemical Physics Letters, 1999, 303, 621-628.	1.2	11
278	Why does {p-But-calix[4]-(OMe)2(O)2ZrCl2} distort away from C2v symmetry?. Chemical Physics Letters, 1999, 315, 145-149.	1.2	1
279	Theoretical Study of the Effect of Lewis Acids on Dihydrogen Elimination from Niobocene Trihydrides. Chemistry - A European Journal, 1999, 5, 1166-1171.	1.7	15
280	Edge-Sharing Binuclear d8 Complexes with XR Bridges: Theoretical and Structural Database Study of their Molecular Conformation. Chemistry - A European Journal, 1999, 5, 1391-1410.	1.7	65
281	2H-T1 Relaxation and Deuterium Quadrupole Coupling Constants in Transition Metall-2-D2 Complexes. Chemistry - A European Journal, 1999, 5, 3318-3325.	1.7	17
282	Extending knowledge on the nucleophilicity of the {Pt2S2} core: Ph2PCH2CH2PPh2 as an alternative terminal ligand in [L2Pt(Î⅓-S)2PtL2] metalloligands â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3103-3113.	1.1	37
283	DFT Study of the Role of Bridging Diphosphine Ligands in the Structure and the Internal Rotation in Quadruply Bonded Metal Dimers of the Mo2Cl4(Pâ°'P)2Type. Inorganic Chemistry, 1999, 38, 5443-5448.	1.9	14
284	Theoretical Study on the Origin of Enantioselectivity in the Bis(dihydroquinidine)-3,6-pyridazine·Osmium Tetroxide-Catalyzed Dihydroxylation of Styrene. Journal of the American Chemical Society, 1999, 121, 1317-1323.	6.6	94
285	Synthesis and Characterization of OsH2Cl[$^{\circ}$ N, $^{\circ}$ O-(ONCR2)](PiPr3)2(CR2= C(CH2)4CH2, R = CH3):Â Influence of the L2Ligand on the Nature of the H2Unit in OsH2ClL2(PiPr3)2(L2= ONCR2, NHC(Ph)C6H4) Complexes. Organometallics, 1999, 18, 4296-4303.	1.1	17
286	Thermally Activated Site Exchange and Quantum Exchange Coupling Processes in Unsymmetrical Trihydride Osmium Compounds. Inorganic Chemistry, 1999, 38, 1814-1824.	1.9	38
287	Theoretical and Synthetic Studies on Dihaptoacyl and \hat{l}^2 -Agostic Acyl Complexes of Molybdenum. Organometallics, 1999, 18, 3294-3305.	1.1	24
288	Edge-Sharing Binuclear d8 Complexes with XR Bridges: Theoretical and Structural Database Study of their Molecular Conformation. Chemistry - A European Journal, 1999, 5, 1391-1410.	1.7	1

#	Article	IF	CITATIONS
289	A density functional study of the internal rotation in the quadruply bonded Mo2Cl4(PH3)4 complex. Chemical Physics Letters, 1998, 287, 243-249.	1.2	16
290	Cis,trans,cis or All-cis Geometry in dOOctahedral Dioxo Complexes. An IMOMM Study of the Role of Steric Effects. Inorganic Chemistry, 1998, 37, 3321-3325.	1.9	28
291	Palladium(II) complexes with Pd2S2 rings. Synthesis and theoretical characterization of [Pd2(dppe)2(μ-S)2] and X-ray characterization of [Pd3(dppe)3(μ3-S)2]Cl2. Inorganic Chemistry Communication, 1998, 1, 466-468.	1.8	18
292	The first stable copper(II) complex containing four sulfide ligands: synthesis and structural characterization of [Pt2(dppe)2($\hat{1}4$ -S)2] and [Cu{Pt2(dppe)2($\hat{1}4$ 3-S)2}2]2+. Chemical Communications, 1998, , 597-598.	2.2	30
293	Phosphines exchange in quadruply bonded metal dimers: theoretical proposal for an alternative to the internal flip mechanism. Chemical Communications, 1998, , 1443-1444.	2.2	8
294	The Kubas Complex Revisited. A Theoretical Study of Dihydrogen Addition and Structure of the Dihydride Form. Organometallics, 1998, 17, 190-195.	1.1	38
295	A Theoretical Insight into the Ability of Group 6 ML5 Metal Fragments to Break the Hâ^'H Bond. Organometallics, 1998, 17, 4932-4939.	1.1	34
296	Synthesis and Characterization of OsX{NHC(Ph)C6H4}H2(PiPr3)2(X = H, Cl, Br, I):Â Nature of the H2Unit and Its Behavior in Solution. Organometallics, 1998, 17, 4065-4076.	1.1	81
297	Effect of the Spinning Motion of the Dihydrogen Ligand on the Properties of an Elongated Dihydrogen Complex. A Theoretical Study of the trans-[Os(HÂ-A-Â-H)Cl(H2PCH2CH2PH2)2]+ Complex. Journal of the American Chemical Society, 1998, 120, 8168-8176.	6.6	45
298	Synthesis and Spectroscopic and Theoretical Characterization of the Elongated Dihydrogen Complex OsCl2(η2-H2)(NHCPh2)(PiPr3)2. Inorganic Chemistry, 1998, 37, 5033-5035.	1.9	43
299	To Bend or Not To Bend:Â Dilemma of the Edge-Sharing Binuclear Square Planar Complexes of d8Transition Metal Ions. Inorganic Chemistry, 1998, 37, 804-813.	1.9	126
300	Theoretical Study of the Effect of a Lewis Acid on Hydrogen Exchange Coupling in a Trihydride Metallocene: The Cp2NbH3·AlH3System. Inorganic Chemistry, 1998, 37, 2334-2339.	1.9	12
301	Synthesis and reactivity of [Oî€sH{C6H4(CHCHî€'H) }(CO)(PPri3)2] and the formato compounds [Os{(E )-CHCHPh}(η2-O 2CH)(CO)(PPri3)2] and [OsH(η2-O2CH)(CO)(PPri3) 2]*. Journal of the Chemical Society Dalton Transactions, 1997, , 181-192.	1.1	31
302	Elongated Dihydrogen Complexes: A Combined Electronic DFT + Nuclear Dynamics Study of the [Ru(H···H)(C5H5)(H2PCH2PH2)]+Complex. Journal of the American Chemical Society, 1997, 119, 9840-9847.	6.6	64
303	Structure and Dynamics of LRh"H4―(L = Cp, Tp) Systems. A Theoretical Study. Organometallics, 1997, 16, 3805-3814.	1.1	48
304	Synthesis and Spectroscopic Properties of Dihydrogen Isocyanide Niobocene [Nb(η5-C5H4SiMe3)2(η2-H2)(CNR)]+Complexes. Experimental and Theoretical Study of the Blocked Rotation of a Coordinated Dihydrogen. Journal of the American Chemical Society, 1997, 119, 6107-6114.	6.6	57
305	Theoretical Characterization of an Intermediate for the [3 + 2] Cycloaddition Mechanism in the Bis(dihydroxy- quinidine)â^3,6-Pyridazine·Osmium Tetroxide-Catalyzed Dihydroxylation of Styrene. Journal of Organic Chemistry, 1997, 62, 7892-7894.	1.7	27
306	Theoretical, structural and NMR studies of fluxionality in thiolato-bridged platinum(II)-platinum(IV) dinuclear complexes. Inorganica Chimica Acta, 1997, 265, 89-102.	1.2	20

#	Article	IF	CITATIONS
307	Dihydrogen Formation in a Trihydride Metallocene and Its Elimination, Both Assisted by Lewis Acids: The[Cp2NbH3]+BH3 System. Angewandte Chemie International Edition in English, 1997, 36, 265-266.	4.4	23
308	Lewisâ€6ären begünstigen die Umwandlung eines Metallocentrihydrids in einen Diwasserstoffkomplex und die H ₂ â€Freisetzung aus ihm: das System [Cp ₂ NbH ₃] + BH ₃ . Angewandte Chemie, 1997, 109, 259-261.	1.6	2
309	[MLn(SiR3)(η2-Hâ^'H)] or [MLn(H)(η2-Hâ^'SiR3)]? An ab Initio MO Study on [OsCl(CO)(PR3)2"H2SiR3â€] Complexes. Organometallics, 1996, 15, 1218-1222.	1.1	31
310	Theoretical Study of the Hydrogen Exchange Coupling in the Metallocene Trihydride Complexes $[(C5H5)2MH3]n+(M=Mo,W,n=1;M=Nb,Ta,n=0)$. Journal of the American Chemical Society, 1996, 118, 4617-4621.	6.6	60
311	Bonding in Elongated Dihydrogen Complexes. Theoretical Analysis of the Electron Density in [MLn(H···H)] Species. Organometallics, 1996, 15, 2947-2953.	1.1	55
312	Theory Does Not Support an Osmaoxetane Intermediate in the Osmium-Catalyzed Dihydroxylation of Olefins. Journal of the American Chemical Society, 1996, 118, 11660-11661.	6.6	121
313	Oxidative Addition of Group 14 Element Hydrido Compounds to OsH2(η2-CH2CHEt)(CO)(PiPr3)2:Â Synthesis and Characterization of the First Trihydridoâ^'Silyl, Trihydridoâ^'Germyl, and Trihydridoâ^'Stannyl Derivatives of Osmium(IV). Inorganic Chemistry, 1996, 35, 1250-1256.	1.9	52
314	Hinge Distortion in Platinum(II) Dimers with a Pt2S2Ring. Anab InitioMolecular Orbital Study. Inorganic Chemistry, 1996, 35, 490-497.	1.9	47
315	A theoretical evaluation of steric and electronic effects on the structure of [OSO4 (NR3)] (NR3 =) Tj $ETQq1\ 1\ 0.000$	7843]4 rg	BT_/Overlock
316	Hydride Exchange Processes in the Coordination Sphere of Transition Metal Complexes:  The OsH3(BH4)(PR3)2 System. Journal of the American Chemical Society, 1996, 118, 8388-8394.	6.6	57
317	Theoretical Evaluation of Steric Effects in [ReH5(PR3)2(SiR3)2] Complexes with the IMOMM Method. Inorganic Chemistry, 1996, 35, 6401-6405.	1.9	29
318	Basis set influence on the ab initio description of the dihydrogen complex [Os(PH3)2Cl(CO)H(H2)]1. Computational and Theoretical Chemistry, 1996, 371, 59-68.	1.5	3
319	Dynamic Behavior in Solution of the <i>Trans</i> â∈Hydridodihydrogen Complex [OsHCl(<i>n</i> ² â∈H ₂)(CO)(P <i>i</i> Pr ₃) ₂]: Ab Initio and NMR Studies. Chemistry - A European Journal, 1996, 2, 815-825.	1.7	56
320	A theoretical evaluation of steric and electronic effects on the structure of [OsO. Theoretica Chimica Acta, 1996, 94, 67.	0.9	11
321	Ab initio Study of the Coordination Modes of the Tetrahydroborato Ligand: Structure of the $[Cu(BH < sub > 4 < sub >) (PH < sub > 3 < sub >) < sub > 4 < sub >] (4 < sub > 4 < sub >) Complexes. Chemistry - A European Journal, 1995, 1, 436-440.$	1.7	10
322	Experimental and Theoretical Study of .piEffects In P-Coordinated (Diphenylphosphino)alkynes. Organometallics, 1995, 14, 1053-1060.	1.1	36
323	Ab initio study of the HCO 3?/H2O exchange in the (NH3)3 Znll(HCO 3?) complex. Theoretica Chimica Acta, 1995, 91, 333-351.	0.9	1
324	Quantum Mechanical Hydrogen Exchange Coupling in [(C5H5)Ir(L)H3]+ Complexes (L = PH3, CO). A Combined ab Initio/Tunneling Dynamics Study. Journal of the American Chemical Society, 1995, 117, 1069-1075.	6.6	46

#	Article	IF	CITATIONS
325	Orbiting of the lithium atom in the [Me2Si(NSiMe3)2]2InLi molecule: theoretical confirmation. Journal of the Chemical Society Chemical Communications, 1995, , 443-444.	2.0	10
326	Transition state structure of the formic acid isomeric reaction in solution. Chemical Physics Letters, 1994, 223, 23-26.	1.2	7
327	Preparation and Spectroscopic and Theoretical Characterization of the Tetrahydroborate Complex OsH3(.eta.2-H2BH2)(P-i-Pr3)2. Inorganic Chemistry, 1994, 33, 3609-3611.	1.9	45
328	Ab initio study of the coordination modes of tetrahydroborato ligands: what is the actual structure of the tris(tetrahydroborato)bis(trimethylphosphine) titanium complex. Inorganic Chemistry, 1993, 32, 951-954.	1.9	21
329	Ab initio calculations of the quantum mechanical hydrogen exchange coupling in the [(C5H5)Ir(PH3)H3]+ complex. Journal of the American Chemical Society, 1993, 115, 5861-5862.	6.6	32
330	Ab initio study of the structure and reactivity of H2CO.cntdot.H2O.bul.+ and related radical cations. Journal of the American Chemical Society, 1993, 115, 9121-9126.	6.6	22
331	Ab initio study of the coordination modes of tetrahydroborato ligands: structure of the tris(tetrahydroborato)titanium. Inorganic Chemistry, 1993, 32, 4695-4699.	1.9	21
332	Ab initio calculations on the [Rh(PH3)3Cl] system. Influence of the basis set on the structural and reactivity trends of transition-metal complexes. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1111-1117.	1.7	9
333	Ab initio study of the hydration of carbon dioxide by carbonic anhydrase. A comparison between the Lipscomb and Lindskog mechanisms. Journal of the American Chemical Society, 1992, 114, 869-877.	6.6	70
334	Intramolecular atom exchange between molecular hydrogen and hydride ligands in cis-[Fe(PR3)4H(H2)]+ complexes. An ab initio theoretical study. Journal of the American Chemical Society, 1992, 114, 2922-2928.	6.6	47
335	Valence-bond calculations on ZNO and HGO using integrals computed through the semiempiricalAM1 method. International Journal of Quantum Chemistry, 1992, 44, 887-895.	1.0	2
336	Proton transfer in the water dimer catalyzed by doubly charged cations (Zn+2, Be+2, and Mg+2). Theoretica Chimica Acta, 1992, 81, 303-318.	0.9	16
337	Ab initio study of the effect of external perturbations in the dissociation of CH3Cl. Computational and Theoretical Chemistry, 1992, 255, 283-296.	1.5	8
338	Analysis of the hydride transfer in the [CH3-H-CH3]+ system in terms of valence bond structures. Computational and Theoretical Chemistry, 1992, 260, 259-272.	1.5	12
339	Vibrational Stark effect: Theoretical determination through the semiempirical AM1 method. Journal of Computational Chemistry, 1992, 13, 821-829.	1.5	22
340	Analysis of the gas-phase addition of water to formaldehyde: A semiempirical andab initiostudy of bifunctional catalysis by H2O. Journal of Computational Chemistry, 1992, 13, 1037-1046.	1.5	42
341	Theoretical Study of the Catalyzed Hydration of CO2 by Carbonic Anhydrase: A Brief Overview, 1992,, 263-298.		2
342	Anion binding and pentacoordination in zinc(II) complexes. Inorganic Chemistry, 1991, 30, 2523-2527.	1.9	31

#	Article	IF	Citations
343	Molecular hydrogen complexes with a hydride ligand. An ab initio study on the iron hydride, [Fe(PR3)4H(H2)]+, system. Journal of the American Chemical Society, 1991, 113, 2879-2884.	6.6	51
344	Analysis of solvent effects on the Menshutkin reaction. Journal of the American Chemical Society, 1991, 113, 2873-2879.	6.6	123
345	Catalysis of Friedel-Crafts reactions by electric fields. The Journal of Physical Chemistry, 1991, 95, 179-183.	2.9	23
346	Ab initio Study of the coordination modes of tetrahydroborato ligands: the high-spin complex bis(phosphine)tris(tetrahydroborato)vanadium. Inorganic Chemistry, 1991, 30, 4440-4445.	1.9	26
347	Calculation of the vibrational frequency and line strength versus applied field of carbon monoxide. Chemical Physics, 1991, 151, 37-43.	0.9	26
348	Analysis in terms of valence-bond structures of environmental effects on the electronic structure of molecules. International Journal of Quantum Chemistry, 1991, 40, 511-525.	1.0	7
349	Theoretical study of infrared spectra perturbed by uniform electric fields:Abinitiocalculations on H2O, NH3, H2CO, and C2H4. Journal of Chemical Physics, 1991, 95, 3521-3527.	1.2	34
350	Molecular Hydrogen as a Ligand in Transition Metal Complexes. , 1991, , 375-396.		0
351	Comparison of semiempirical and bsse corrected mÃ,ller-plesset ab initio calculations on the direct addition of water to formaldehyde. Computational and Theoretical Chemistry, 1990, 210, 427-440.	1.5	22
352	Ab initiostudy of substituent effect on the addition of hydrogen fluoride to fluoroethylenes. Journal of Computational Chemistry, 1990, 11, 170-180.	1.5	13
353	Influence of an external uniform electric field on harmonic vibrational frequencies. Analytic energy second derivatives for closedâ€shell restricted Hartree–Fock wave functions with an applied uniform electric field. Journal of Chemical Physics, 1989, 90, 328-333.	1.2	32
354	Molecular hydrogen complex vs dihydride in ML4 + H2 systems. Influence of the ML4 fragment geometry. Inorganic Chemistry, 1989, 28, 2984-2988.	1.9	8
355	AM1 study of hydrogen bonded complexes of water. Computational and Theoretical Chemistry, 1989, 187, 55-68.	1.5	42
356	Analysis of solvent effect on SN2 reactions by different theoretical models. Journal of Physical Organic Chemistry, 1989, 2, 611-622.	0.9	24
357	Electric fields acting as catalysts in chemical reactions. An ab initio study of the walden inversion reaction. Chemical Physics Letters, 1988, 153, 82-86.	1.2	37
358	Bond-stretch isomerism in transition-metal complexes. Journal of the American Chemical Society, 1988, 110, 4506-4516.	6.6	85
359	Relaxation or fluctuation of the ionic atmosphere in charge-transfer reactions. An ab initio study of the charge transfer in the (H3O2)- and (FCH3F)- systems. Journal of the American Chemical Society, 1988, 110, 996-1001.	6.6	14
360	Electronic mechanisms associated with bond-stretch isomerism in transition metal complexes. Journal of the Chemical Society Chemical Communications, 1988, , 140.	2.0	12

AGUSTI LLEDOS

#	Article	IF	CITATION
361	Cycloaddition intermediates: Zwitterions or diradicals?. Computational and Theoretical Chemistry, 1987, 149, 153-160.	1.5	5
362	Acid-catalyzed hydrogenation of olefins. A theoretical study of the hydrogen fluoride and H3O+ catalyzed hydrogenation of ethylene. Journal of the American Chemical Society, 1987, 109, 7623-7629.	6.6	22
363	Theoretical study of reaction mechanisms for the ketonization of vinyl alcohol in gas phase and aqueous solution. Theoretica Chimica Acta, 1987, 72, 175-195.	0.9	56
364	Theoretical study of the addition of hydrogen halides to olefins: A comparison between (HCl)2and (HF)2additions to ethylene. Journal of Computational Chemistry, 1987, 8, 481-488.	1.5	27
365	Interaction of molecular H2 with some d6-ML5 and d8-ML4 mixed ligand complexes (L = $\ddot{l}f$ -donor or) Tj ETQq1 1	0.784314 0.2	rg _{\$} BT /Over
366	Theoretical study of the addition of hydrogen halides to olefins: reaction of dimeric hydrogen fluoride with ethylene. Journal of the American Chemical Society, 1986, 108, 923-928.	6.6	42
367	Correlation between proton transfer and solvent motion in the (H3O2)â^² species. Chemical Physics Letters, 1986, 124, 177-180.	1.2	23
368	Water-Chain intervention in the ketonization of vinyl alcohol. An ab initio study. International Journal of Quantum Chemistry, 1986, 30, 467-477.	1.0	19
369	Solvent relaxation and proton transfer in the (H5O2)+(H2O)4 species. Journal of the Chemical Society Faraday Transactions I, 1985, 81, 1547.	1.0	9
370	Water chain intervention in HNC â†' HCN tautomeric interconversion. Computational and Theoretical Chemistry, 1985, 123, 211-219.	1.5	12
371	Solvent intervention in lactim/lactam tautomeric interconversion. Computational and Theoretical Chemistry, 1985, 120, 73-78.	1.5	15
372	Mechanism of C-hydroxyimine/formamide tautomerism in solution. Computational and Theoretical Chemistry, 1984, 107, 233-238.	1.5	11
373	Water chain intervention in hydrolytic and tautomeric reactions. International Journal of Quantum Chemistry, 1983, 23, 587-593.	1.0	18
374	Lactam/lactim tautomeric interconversion mechanism of 2-pyridone in aqueous solution. Tetrahedron Letters, 1981, 22, 775-778.	0.7	55