Justin Nodwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393600/publications.pdf

Version: 2024-02-01

79 papers

4,373 citations

35 h-index 63 g-index

84 all docs 84 docs citations

84 times ranked 3806 citing authors

#	Article	IF	CITATIONS
1	High-Throughput Chemical Screen Identifies a 2,5-Disubstituted Pyridine as an Inhibitor of Candida albicans Erg11. MSphere, 2022, 7, e0007522.	2.9	3
2	DNA damage-induced block of sporulation in Streptomyces venezuelae involves downregulation of ssgB. Microbiology (United Kingdom), 2022, 168 , .	1.8	1
3	Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nature Communications, 2022, 13, .	12.8	21
4	Metabolomic profiling and biological investigation of <i>Tabebuia Aurea</i> (Silva Manso) leaves, family Bignoniaceae. Natural Product Research, 2021, 35, 4632-4637.	1.8	11
5	Chemical and biological studies on the soft coral <i>Nephthea</i> sp RSC Advances, 2021, 11, 23654-23663.	3.6	6
6	A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Molecular Cell, 2021, 81, 571-583.e6.	9.7	80
7	The ARC2 response in Streptomcyes coelicolor requires the global regulatory genes afsR and afsS. Microbiology (United Kingdom), 2021, 167, .	1.8	4
8	Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nature Microbiology, 2021, 6, 1118-1128.	13.3	11
9	A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nature Communications, 2021, 12, 6151.	12.8	50
10	Metabolomics analysis and biological investigation of three Malvaceae plants. Phytochemical Analysis, 2020, 31, 204-214.	2.4	66
11	Chemical entrapment and killing of insects by bacteria. Nature Communications, 2020, 11, 4608.	12.8	18
12	Natural Products Repertoire of the Red Sea. Marine Drugs, 2020, 18, 457.	4.6	20
13	An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nature Communications, 2020, 11 , 6429.	12.8	49
14	Dualâ€PKS Cluster for Biosynthesis of a Lightâ€Induced Secondary Metabolite Found from Genome Sequencing of Hyphodiscus hymeniophilus Fungus. ChemBioChem, 2020, 21, 2116-2120.	2.6	3
15	Discovery of a Novel DNA Gyrase-Targeting Antibiotic through the Chemical Perturbation of Streptomyces venezuelae Sporulation. Cell Chemical Biology, 2019, 26, 1274-1282.e4.	5.2	18
16	Put a Bow on It: Knotted Antibiotics Take Center Stage. Antibiotics, 2019, 8, 117.	3.7	32
17	The Lasso Peptide Siamycin-I Targets Lipid II at the Gram-Positive Cell Surface. ACS Chemical Biology, 2019, 14, 966-974.	3.4	33
18	A Chemical Inhibitor of Cell Growth Reduces Cell Size in <i>Bacillus subtilis</i> ACS Chemical Biology, 2019, 14, 688-695.	3.4	7

#	Article	IF	CITATIONS
19	Microbe Profile: Streptomyces coelicolor: a burlesque of pigments and phenotypes. Microbiology (United Kingdom), 2019, 165, 953-955.	1.8	6
20	Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. ELife, 2019, 8, .	6.0	48
21	Membrane activity profiling of small molecule <i>B. subtilis</i> growth inhibitors utilizing novel duel-dye fluorescence assay. MedChemComm, 2018, 9, 554-561.	3.4	16
22	A chemical defence against phage infection. Nature, 2018, 564, 283-286.	27.8	142
23	A new antitrypanosomal alkaloid from the Red Sea marine sponge Hyrtios sp Journal of Antibiotics, 2018, 71, 1036-1039.	2.0	17
24	Control of Specialized Metabolism by Signaling and Transcriptional Regulation: Opportunities for New Platforms for Drug Discovery?. Annual Review of Microbiology, 2018, 72, 25-48.	7.3	32
25	An Engineered Allele of <i>afsQ1</i> Facilitates the Discovery and Investigation of Cryptic Natural Products. ACS Chemical Biology, 2017, 12, 628-634.	3.4	37
26	Antimicrobials: Expressing antibiotic gene clusters. Nature Microbiology, 2017, 2, 17061.	13.3	2
27	Actinorhodin is a redoxâ€active antibiotic with a complex mode of action against <scp>G</scp> ramâ€positive cells. Molecular Microbiology, 2017, 106, 597-613.	2.5	33
28	Streptomyces exploration is triggered by fungal interactions and volatile signals. ELife, 2017, 6, .	6.0	144
29	Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris. BMC Genomics, 2017, 18, 912.	2.8	25
30	Biosynthetic Genes for the Tetrodecamycin Antibiotics. Journal of Bacteriology, 2016, 198, 1965-1973.	2.2	3
31	Tetrodecamycin: An unusual and interesting tetronate antibiotic. Bioorganic and Medicinal Chemistry, 2016, 24, 6269-6275.	3.0	10
32	David and Goliath: chemical perturbation of eukaryotes by bacteria. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 233-248.	3.0	5
33	Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference. ACS Chemical Biology, 2015, 10, 2616-2623.	3.4	43
34	13-Deoxytetrodecamycin, a new tetronate ring-containing antibiotic that is active against multidrug-resistant Staphylococcus aureus. Journal of Antibiotics, 2015, 68, 698-702.	2.0	7
35	Streptomyces: A Screening Tool for Bacterial Cell Division Inhibitors. Journal of Biomolecular Screening, 2015, 20, 275-284.	2.6	5
36	The expression of antibiotic resistance genes in antibioticâ€producing bacteria. Molecular Microbiology, 2014, 93, 391-402.	2.5	63

#	Article	IF	Citations
37	Activating secondary metabolism with stress and chemicals. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 415-424.	3.0	92
38	Are you talking to me? A possible role for γâ€butyrolactones in interspecies signalling. Molecular Microbiology, 2014, 94, 483-485.	2.5	21
39	A Synthetic, Speciesâ€Specific Activator of Secondary Metabolism and Sporulation in <i>Streptomyces coelicolor</i> . ChemBioChem, 2013, 14, 83-91.	2.6	27
40	The TetR Family of Regulators. Microbiology and Molecular Biology Reviews, 2013, 77, 440-475.	6.6	472
41	Deglycosylation as a Mechanism of Inducible Antibiotic Resistance Revealed Using a Global Relational Tree for One-Component Regulators. Chemistry and Biology, 2013, 20, 232-240.	6.0	26
42	Towards a new science of secondary metabolism. Journal of Antibiotics, 2013, 66, 387-400.	2.0	112
43	A Two-Step Mechanism for the Activation of Actinorhodin Export and Resistance in Streptomyces coelicolor. MBio, 2012, 3, e00191-12.	4.1	56
44	Chemical Perturbation of Secondary Metabolism Demonstrates Important Links to Primary Metabolism. Chemistry and Biology, 2012, 19, 1020-1027.	6.0	149
45	Genome Context as a Predictive Tool for Identifying Regulatory Targets of the TetR Family Transcriptional Regulators. PLoS ONE, 2012, 7, e50562.	2.5	58
46	Better Chemistry through Regulation. Chemistry and Biology, 2011, 18, 1515-1516.	6.0	2
47	Bacterial Transmembrane Proteins that Lack N-Terminal Signal Sequences. PLoS ONE, 2011, 6, e19421.	2.5	18
48	Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. Journal of Antibiotics, 2010, 63, 177-182.	2.0	53
49	Transmembrane topology of the AbsA1 sensor kinase of Streptomyces coelicolor. Microbiology (United Kingdom), 2009, 155, 1812-1818.	1.8	9
50	Chapter 5 Applying the Genetics of Secondary Metabolism in Model Actinomycetes to the Discovery of New Antibiotics. Methods in Enzymology, 2009, 458, 117-141.	1.0	70
51	Crystal Structures of the Streptomyces coelicolor TetR-Like Protein ActR Alone and in Complex with Actinorhodin or the Actinorhodin Biosynthetic Precursor (S)-DNPA. Journal of Molecular Biology, 2008, 376, 1377-1387.	4.2	59
52	Ligand Recognition by ActR, a TetR-Like Regulator of Actinorhodin Export. Journal of Molecular Biology, 2008, 383, 753-761.	4.2	45
53	Investigation of Transcription Repression and Small-Molecule Responsiveness by TetR-Like Transcription Factors Using a Heterologous <i>Escherichia coli</i> Bacteriology, 2007, 189, 6655-6664.	2.2	23
54	Phosphorylated AbsA2 Negatively Regulates Antibiotic Production in Streptomyces coelicolor through Interactions with Pathway-Specific Regulatory Gene Promoters. Journal of Bacteriology, 2007, 189, 5284-5292.	2.2	89

#	Article	IF	CITATIONS
55	Novel Links between Antibiotic Resistance and Antibiotic Production. Journal of Bacteriology, 2007, 189, 3683-3685.	2.2	35
56	A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucleic Acids Research, 2007, 35, e46-e46.	14.5	75
57	Initiation of actinorhodin export in Streptomyces coelicolor. Molecular Microbiology, 2007, 63, 951-961.	2.5	116
58	Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid, 2007, 58, 167-173.	1.4	6
59	Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Molecular Microbiology, 2006, 59, 731-742.	2.5	103
60	Critical Residues and Novel Effects of Overexpression of the Streptomyces coelicolor Developmental Protein BldB: Evidence for a Critical Interacting Partner. Journal of Bacteriology, 2006, 188, 8189-8195.	2.2	28
61	Biochemical Activities of the absA Two-Component System of Streptomyces coelicolor. Journal of Bacteriology, 2005, 187, 687-696.	2.2	59
62	Pivotal Roles for the Receiver Domain in the Mechanism of Action of the Response Regulator RamR of Streptomyces coelicolor. Journal of Molecular Biology, 2005, 351, 1030-1047.	4.2	47
63	Dimerization of the RamC Morphogenetic Protein of Streptomyces coelicolor. Journal of Bacteriology, 2004, 186, 1330-1336.	2.2	9
64	From The Cover: The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11448-11453.	7.1	286
65	Membrane Association and Kinase-Like Motifs of the RamC Protein of Streptomyces coelicolor. Journal of Bacteriology, 2002, 184, 4920-4924.	2.2	22
66	Structural and Genetic Analysis of the BldB Protein of Streptomyces coelicolor. Journal of Bacteriology, 2002, 184, 4270-4276.	2.2	38
67	StoPKâ€1, a serine/threonine protein kinase from the glycopeptide antibiotic producer <i>Streptomyces toyocaensis</i> NRRL 15009, affects oxidative stress response. Molecular Microbiology, 2002, 44, 417-430.	2.5	31
68	The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Molecular Microbiology, 2002, 45, 45-57.	2.5	72
69	Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9642-9647.	7.1	67
70	Extracellular Complementation and the Identification of Additional Genes Involved in Aerial Mycelium Formation in Streptomyces coelicolor. Genetics, 1999, 151, 569-584.	2.9	44
71	The Streptomyces coelicolor sporulation-specific ÏfWhiG form of RNA polymerase transcribes a gene encoding a ProX-like protein that is dispensable for sporulation. Gene, 1998, 212, 137-146.	2.2	29
72	Purification of an Extracellular Signaling Molecule Involved in Production of Aerial Mycelium by <i>Streptomyces coelicolor</i> . Journal of Bacteriology, 1998, 180, 1334-1337.	2.2	73

#	Article	IF	CITATIONS
73	Assembly of the cell division protein FtsZ into ladderâ€like structures in the aerial hyphae of Streptomyces coelicolor. Molecular Microbiology, 1997, 25, 847-858.	2.5	135
74	An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Molecular Microbiology, 1996, 22, 881-893.	2.5	138
75	Transcriptional antitermination. Nature, 1993, 364, 401-406.	27.8	253
76	Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell, 1993, 72, 261-268.	28.9	141
77	The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase Genes and Development, 1991, 5, 2141-2151.	5.9	83
78	Multicellular Development in <i>Streptomyces</i> ., 0, , 419-438.		30
79	Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes., 0,, 91-104.		0