List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393362/publications.pdf Version: 2024-02-01

<u> Ρειι ι \λ/ι</u>ι

#	Article	IF	CITATIONS
1	Monsoon intra-seasonal variability in a high-resolution version of Met Office Global Coupled model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 69, 1354661.	1.7	8
2	A Moderate Mitigation Can Significantly Delay the Emergence of Compound Hot Extremes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
3	The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 2022, 23, 253-274.	1.9	10
4	Potential shifts in climate zones under a future global warming scenario using soil moisture classification. Climate Dynamics, 2021, 56, 2071-2092.	3.8	23
5	Drivers of Summer Extreme Precipitation Events Over East China. Geophysical Research Letters, 2021, 48, e2021GL093670.	4.0	42
6	Amplified Waveguide Teleconnections Along the Polar Front Jet Favor Summer Temperature Extremes Over Northern Eurasia. Geophysical Research Letters, 2021, 48, e2021GL093735.	4.0	16
7	Enhanced Turbulent Heat Fluxes Improve Meiyuâ€Baiu Simulation in Highâ€Resolution Atmospheric Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002430.	3.8	3
8	The Anomalous Mei-yu Rainfall of Summer 2020 from a Circulation Clustering Perspective: Current and Possible Future Prevalence. Advances in Atmospheric Sciences, 2021, 38, 2010-2022.	4.3	8
9	Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Science Advances, 2021, 7, .	10.3	111
10	Unprecedented recent late-summer warm extremes recorded in tree-ring density on the Tibetan Plateau. Environmental Research Letters, 2020, 15, 024006.	5.2	2
11	Skillful Decadal Prediction of Droughts Over Largeâ€Scale River Basins Across the Globe. Geophysical Research Letters, 2020, 47, e2020GL089738.	4.0	4
12	Emergent constraints on future projections of the western North Pacific Subtropical High. Nature Communications, 2020, 11, 2802.	12.8	65
13	Roles of Tibetan Plateau vortices in the heavy rainfall over southwestern China in early July 2018. Atmospheric Research, 2020, 245, 105059.	4.1	17
14	A comprehensive evaluation of soil moisture and soil temperature from thirdâ€generation atmospheric and land reanalysis data sets. International Journal of Climatology, 2020, 40, 5744-5766.	3.5	104
15	Evaluation of NCEPâ€FNL and ERAâ€Interim Data Sets in Detecting Tibetan Plateau Vortices in May–August of 2000–2015. Earth and Space Science, 2020, 7, e2019EA000907.	2.6	14
16	The impact of horizontal atmospheric resolution in modelling air–sea heat fluxes. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3271-3283.	2.7	7
17	Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 2019, 10, 4661.	12.8	236
18	Detection of human influences on temperature seasonality from the nineteenth century. Nature Sustainability, 2019, 2, 484-490.	23.7	27

#	Article	IF	CITATIONS
19	Interdecadal Seesaw of Precipitation Variability between North China and the Southwest United States. Journal of Climate, 2019, 32, 2951-2968.	3.2	24
20	Better monsoon precipitation in coupled climate models due to bias compensation. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	26
21	Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2. Advances in Atmospheric Sciences, 2018, 35, 1077-1093.	4.3	1
22	Potential Underestimation of Future Mei-Yu Rainfall with Coarse-Resolution Climate Models. Journal of Climate, 2018, 31, 6711-6727.	3.2	16
23	Effect of Horizontal Resolution on the Representation of the Global Monsoon Annual Cycle in AGCMs. Advances in Atmospheric Sciences, 2018, 35, 1003-1020.	4.3	11
24	Highâ€resolution simulation of the boreal summer intraseasonal oscillation in Met Office Unified Model. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 362-373.	2.7	12
25	Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China. Journal of Climate, 2017, 30, 1381-1396.	3.2	80
26	Decadal Modulation of Precipitation Patterns over Eastern China by Sea Surface Temperature Anomalies. Journal of Climate, 2017, 30, 7017-7033.	3.2	103
27	An evaluation of boreal summer intra-seasonal oscillation simulated by BCC_AGCM2.2. Climate Dynamics, 2017, 48, 3409-3423.	3.8	8
28	Aerosol forcing of extreme summer drought over North China. Environmental Research Letters, 2017, 12, 034020.	5.2	36
29	Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Scientific Reports, 2016, 6, 38506.	3.3	86
30	Added value of high resolution models in simulating global precipitation characteristics. Atmospheric Science Letters, 2016, 17, 646-657.	1.9	32
31	Increasing flash droughts over China during the recent global warming hiatus. Scientific Reports, 2016, 6, 30571.	3.3	179
32	Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 2016, 11, 094002.	5.2	61
33	The reversibility of CO2 induced climate change. Climate Dynamics, 2015, 45, 745-754.	3.8	39
34	Multidecadal variability in local growing season during 1901–2009. Climate Dynamics, 2013, 41, 295-305.	3.8	23
35	Anthropogenic impact on Earth's hydrological cycle. Nature Climate Change, 2013, 3, 807-810.	18.8	249
36	Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Climate Dynamics, 2013, 40, 295-316.	3.8	58

#	Article	IF	CITATIONS
37	Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 2013, 3, 47-51.	18.8	262
38	A step-response approach for predicting and understanding non-linear precipitation changes. Climate Dynamics, 2012, 39, 2789-2803.	3.8	39
39	Extended warming of the northern high latitudes due to an overshoot of the Atlantic meridional overturning circulation. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	25
40	Temporary acceleration of the hydrological cycle in response to a CO ₂ rampdown. Geophysical Research Letters, 2010, 37, .	4.0	81
41	Convection induced long term freshening of the subpolar North Atlantic Ocean. Climate Dynamics, 2008, 31, 941-956.	3.8	9
42	Large-Scale Atlantic Salinity Changes over the Last Half-Century: A Model–Observation Comparison. Journal of Climate, 2008, 21, 1698-1720.	3.2	18
43	Relations between Northward Ocean and Atmosphere Energy Transports in a Coupled Climate Model. Journal of Climate, 2008, 21, 561-575.	3.2	44
44	Simulating the Terms in the Arctic Hydrological Budget. , 2008, , 363-384.		7
45	Deep North Atlantic freshening simulated in a coupled climate model. Progress in Oceanography, 2007, 73, 370-383.	3.2	6
46	Human influence on increasing Arctic river discharges. Geophysical Research Letters, 2005, 32, .	4.0	125
47	Does the recent freshening trend in the North Atlantic indicate a weakening thermohaline circulation?. Geophysical Research Letters, 2004, 31, .	4.0	29
48	Low-Latitude Freshwater Influence on Centennial Variability of the Atlantic Thermohaline Circulation. Journal of Climate, 2004, 17, 4498-4511.	3.2	224
49	Gulf Stream forcing of the winter North Atlantic oscillation. Atmospheric Science Letters, 2003, 5, 57-64.	1.9	10
50	Oceanic Influence on North Atlantic Climate Variability. Journal of Climate, 2002, 15, 1911-1925.	3.2	31
51	Toward an Understanding of Deep-Water Renewal in the Eastern Mediterranean. Journal of Physical Oceanography, 2000, 30, 443-458.	1.7	73
52	GCM studies of intermediate and deep waters in the Mediterranean. Journal of Marine Systems, 1998, 18, 197-214.	2.1	11
53	The general circulation of the Mediterranean Sea from a 100-year simulation. Journal of Geophysical Research, 1998, 103, 1121-1135.	3.3	47
54	Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation. Journal of Geophysical Research, 1996, 101, 6591-6607.	3.3	112

#	Article	IF	CITATIONS
55	Nonlinear structures with multivalued (q, r̈) relationships—exact solutions of the barotropic vorticity equation on a sphere. Geophysical and Astrophysical Fluid Dynamics, 1993, 69, 77-94.	1.2	13
56	Nonlinear Resonance and Instability of Planetary Waves and Low-Frequency Variability in the Atmosphere. Journals of the Atmospheric Sciences, 1993, 50, 3590-3607.	1.7	17
57	An observational study of the 30–50 day atmospheric oscillations part I: Structure and propagation. Advances in Atmospheric Sciences, 1990, 7, 294-304.	4.3	14