Peili Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393362/publications.pdf

Version: 2024-02-01

		218677	168389
57	2,947 citations	26	53
papers	citations	h-index	g-index
57	57	57	3833
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 2013, 3, 47-51.	18.8	262
2	Anthropogenic impact on Earth's hydrological cycle. Nature Climate Change, 2013, 3, 807-810.	18.8	249
3	Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 2019, 10, 4661.	12.8	236
4	Low-Latitude Freshwater Influence on Centennial Variability of the Atlantic Thermohaline Circulation. Journal of Climate, 2004, 17, 4498-4511.	3.2	224
5	Increasing flash droughts over China during the recent global warming hiatus. Scientific Reports, 2016, 6, 30571.	3.3	179
6	Human influence on increasing Arctic river discharges. Geophysical Research Letters, 2005, 32, .	4.0	125
7	Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation. Journal of Geophysical Research, 1996, 101, 6591-6607.	3.3	112
8	Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Science Advances, $2021, 7, .$	10.3	111
9	A comprehensive evaluation of soil moisture and soil temperature from thirdâ€generation atmospheric and land reanalysis data sets. International Journal of Climatology, 2020, 40, 5744-5766.	3.5	104
10	Decadal Modulation of Precipitation Patterns over Eastern China by Sea Surface Temperature Anomalies. Journal of Climate, 2017, 30, 7017-7033.	3.2	103
11	Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Scientific Reports, 2016, 6, 38506.	3.3	86
12	Temporary acceleration of the hydrological cycle in response to a CO ₂ rampdown. Geophysical Research Letters, 2010, 37, .	4.0	81
13	Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China. Journal of Climate, 2017, 30, 1381-1396.	3.2	80
14	Toward an Understanding of Deep-Water Renewal in the Eastern Mediterranean. Journal of Physical Oceanography, 2000, 30, 443-458.	1.7	73
15	Emergent constraints on future projections of the western North Pacific Subtropical High. Nature Communications, 2020, 11, 2802.	12.8	65
16	Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 2016, 11, 094002.	5.2	61
17	Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Climate Dynamics, 2013, 40, 295-316.	3.8	58
18	The general circulation of the Mediterranean Sea from a 100-year simulation. Journal of Geophysical Research, 1998, 103, 1121-1135.	3.3	47

#	Article	IF	CITATIONS
19	Relations between Northward Ocean and Atmosphere Energy Transports in a Coupled Climate Model. Journal of Climate, 2008, 21, 561-575.	3.2	44
20	Drivers of Summer Extreme Precipitation Events Over East China. Geophysical Research Letters, 2021, 48, e2021GL093670.	4.0	42
21	A step-response approach for predicting and understanding non-linear precipitation changes. Climate Dynamics, 2012, 39, 2789-2803.	3.8	39
22	The reversibility of CO2 induced climate change. Climate Dynamics, 2015, 45, 745-754.	3.8	39
23	Aerosol forcing of extreme summer drought over North China. Environmental Research Letters, 2017, 12, 034020.	5.2	36
24	Added value of high resolution models in simulating global precipitation characteristics. Atmospheric Science Letters, 2016, 17, 646-657.	1.9	32
25	Oceanic Influence on North Atlantic Climate Variability. Journal of Climate, 2002, 15, 1911-1925.	3.2	31
26	Does the recent freshening trend in the North Atlantic indicate a weakening thermohaline circulation?. Geophysical Research Letters, 2004, 31, .	4.0	29
27	Detection of human influences on temperature seasonality from the nineteenth century. Nature Sustainability, 2019, 2, 484-490.	23.7	27
28	Better monsoon precipitation in coupled climate models due to bias compensation. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	26
29	Extended warming of the northern high latitudes due to an overshoot of the Atlantic meridional overturning circulation. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	25
30	Interdecadal Seesaw of Precipitation Variability between North China and the Southwest United States. Journal of Climate, 2019, 32, 2951-2968.	3.2	24
31	Multidecadal variability in local growing season during 1901–2009. Climate Dynamics, 2013, 41, 295-305.	3.8	23
32	Potential shifts in climate zones under a future global warming scenario using soil moisture classification. Climate Dynamics, 2021, 56, 2071-2092.	3.8	23
33	Large-Scale Atlantic Salinity Changes over the Last Half-Century: A Model–Observation Comparison. Journal of Climate, 2008, 21, 1698-1720.	3.2	18
34	Nonlinear Resonance and Instability of Planetary Waves and Low-Frequency Variability in the Atmosphere. Journals of the Atmospheric Sciences, 1993, 50, 3590-3607.	1.7	17
35	Roles of Tibetan Plateau vortices in the heavy rainfall over southwestern China in early July 2018. Atmospheric Research, 2020, 245, 105059.	4.1	17
36	Potential Underestimation of Future Mei-Yu Rainfall with Coarse-Resolution Climate Models. Journal of Climate, 2018, 31, 6711-6727.	3.2	16

#	Article	IF	CITATIONS
37	Amplified Waveguide Teleconnections Along the Polar Front Jet Favor Summer Temperature Extremes Over Northern Eurasia. Geophysical Research Letters, 2021, 48, e2021GL093735.	4.0	16
38	An observational study of the 30–50 day atmospheric oscillations part I: Structure and propagation. Advances in Atmospheric Sciences, 1990, 7, 294-304.	4.3	14
39	Evaluation of NCEPâ€FNL and ERAâ€Interim Data Sets in Detecting Tibetan Plateau Vortices in May–August of 2000–2015. Earth and Space Science, 2020, 7, e2019EA000907.	2.6	14
40	Nonlinear structures with multivalued (q, Ï) relationshipsâ€"exact solutions of the barotropic vorticity equation on a sphere. Geophysical and Astrophysical Fluid Dynamics, 1993, 69, 77-94.	1.2	13
41	Highâ€resolution simulation of the boreal summer intraseasonal oscillation in Met Office Unified Model. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 362-373.	2.7	12
42	GCM studies of intermediate and deep waters in the Mediterranean. Journal of Marine Systems, 1998, 18, 197-214.	2.1	11
43	Effect of Horizontal Resolution on the Representation of the Global Monsoon Annual Cycle in AGCMs. Advances in Atmospheric Sciences, 2018, 35, 1003-1020.	4.3	11
44	Gulf Stream forcing of the winter North Atlantic oscillation. Atmospheric Science Letters, 2003, 5, 57-64.	1.9	10
45	The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 2022, 23, 253-274.	1.9	10
46	Convection induced long term freshening of the subpolar North Atlantic Ocean. Climate Dynamics, 2008, 31, 941-956.	3.8	9
47	A Moderate Mitigation Can Significantly Delay the Emergence of Compound Hot Extremes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
48	Monsoon intra-seasonal variability in a high-resolution version of Met Office Global Coupled model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 69, 1354661.	1.7	8
49	An evaluation of boreal summer intra-seasonal oscillation simulated by BCC_AGCM2.2. Climate Dynamics, 2017, 48, 3409-3423.	3.8	8
50	The Anomalous Mei-yu Rainfall of Summer 2020 from a Circulation Clustering Perspective: Current and Possible Future Prevalence. Advances in Atmospheric Sciences, 2021, 38, 2010-2022.	4.3	8
51	The impact of horizontal atmospheric resolution in modelling air–sea heat fluxes. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3271-3283.	2.7	7
52	Simulating the Terms in the Arctic Hydrological Budget. , 2008, , 363-384.		7
53	Deep North Atlantic freshening simulated in a coupled climate model. Progress in Oceanography, 2007, 73, 370-383.	3.2	6
54	Skillful Decadal Prediction of Droughts Over Largeâ€Scale River Basins Across the Globe. Geophysical Research Letters, 2020, 47, e2020GL089738.	4.0	4

PEILI Wu

#	Article	IF	CITATIONS
55	Enhanced Turbulent Heat Fluxes Improve Meiyuâ∈Baiu Simulation in Highâ∈Resolution Atmospheric Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002430.	3.8	3
56	Unprecedented recent late-summer warm extremes recorded in tree-ring density on the Tibetan Plateau. Environmental Research Letters, 2020, 15, 024006.	5.2	2
57	Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2. Advances in Atmospheric Sciences, 2018, 35, 1077-1093.	4.3	1