
Rongxiao Che

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1392776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water resource conservation promotes synergy between economy and environment in China's northern drylands. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	16
2	Heavy rainfall in peak growing season had larger effects on soil nitrogen flux and pool than in the late season in a semiarid grassland. Agriculture, Ecosystems and Environment, 2022, 326, 107785.	2.5	4
3	Environmental selection overturns the decay relationship of soil prokaryotic community over geographic distance across grassland biotas. ELife, 2022, 11, .	2.8	5
4	Joint control by soil moisture, functional genes and substrates on response of N2O flux to climate extremes in a semiarid grassland. Agricultural and Forest Meteorology, 2022, 316, 108854.	1.9	5
5	Distinct assembly mechanisms of microbial sub-communities with different rarity along the Nu River. Journal of Soils and Sediments, 2022, 22, 1530-1545.	1.5	30
6	Wood decay fungi: an analysis of worldwide research. Journal of Soils and Sediments, 2022, 22, 1688-1702.	1.5	20
7	Livelihood resilience in pastoral communities: Methodological and field insights from Qinghai-Tibetan Plateau. Science of the Total Environment, 2022, 838, 155960.	3.9	15
8	The effects of grazer exclosure duration on soil microbial communities on the Qinghai-Tibetan Plateau. Science of the Total Environment, 2022, 839, 156238.	3.9	19
9	Characteristics and trends of grassland degradation research. Journal of Soils and Sediments, 2022, 22, 1901-1912.	1.5	16
10	Evenness is important in assessing progress towards sustainable development goals. National Science Review, 2021, 8, nwaa238.	4.6	27
11	Drought and heat wave impacts on grassland carbon cycling across hierarchical levels. Plant, Cell and Environment, 2021, 44, 2402-2413.	2.8	22
12	Toxic trace element resistance genes and systems identified using the shotgun metagenomics approach in an Iranian mine soil. Environmental Science and Pollution Research, 2021, 28, 4845-4856.	2.7	6
13	The composition of antibiotic resistance genes is not affected by grazing but is determined by microorganisms in grassland soils. Science of the Total Environment, 2021, 761, 143205.	3.9	19
14	Warming and grazing interact to affect root dynamics in an alpine meadow. Plant and Soil, 2021, 459, 109-124.	1.8	5
15	An Intrinsic Geometric Constraint on Morphological Stomatal Traits. Frontiers in Plant Science, 2021, 12, 658702.	1.7	5
16	Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biology and Biochemistry, 2021, 157, 108238.	4.2	21
17	Microbial abundance and diversity investigations along rivers: Current knowledge and future directions. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1547.	2.8	19
18	Cover Image, Volume 8, Issue 5. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1551.	2.8	0

#	Article	IF	CITATIONS
19	Nonlinear carbon cycling responses to precipitation variability in a semiarid grassland. Science of the Total Environment, 2021, 781, 147062.	3.9	9
20	Downward aeration promotes static composting by affecting mineralization and humification. Bioresource Technology, 2021, 338, 125592.	4.8	18
21	Responses of soil extracellular enzyme activities and bacterial community composition to seasonal stages of drought in a semiarid grassland. Geoderma, 2021, 401, 115327.	2.3	19
22	Spatial patterns of microbial nitrogen-cycling gene abundances along a precipitation gradient in various temperate grasslands at a regional scale. Geoderma, 2021, 404, 115236.	2.3	16
23	Responses of ammoniaâ€oxidizing archaea and bacteria to nitrogen and phosphorus amendments in an alpine steppe. European Journal of Soil Science, 2020, 71, 940-954.	1.8	14
24	Terrestrial N ₂ O emissions and related functional genes under climate change: A global metaâ€analysis. Global Change Biology, 2020, 26, 931-943.	4.2	125
25	Bacterial community structure upstream and downstream of cascade dams along the Lancang River in southwestern China. Environmental Science and Pollution Research, 2020, 27, 42933-42947.	2.7	19
26	Increased litter input significantly changed the total and active microbial communities in degraded grassland soils. Journal of Soils and Sediments, 2020, 20, 2804-2816.	1.5	23
27	Responses of soil microbes and their interactions with plant community after nitrogen and phosphorus addition in a Tibetan alpine steppe. Journal of Soils and Sediments, 2020, 20, 2236-2247.	1.5	16
28	Phosphorus but not nitrogen addition significantly changes diazotroph diversity and community composition in typical karst grassland soil. Agriculture, Ecosystems and Environment, 2020, 301, 106987.	2.5	36
29	Seasonal effects of river flow on microbial community coalescence and diversity in a riverine network. FEMS Microbiology Ecology, 2020, 96, .	1.3	33
30	Ecological consequence of nomad settlement policy in the pasture area of Qinghai-Tibetan Plateau: From plant and soil perspectives. Journal of Environmental Management, 2020, 260, 110114.	3.8	21
31	Bacterial community composition in soils covered by different vegetation types in the Yancheng tidal marsh. Environmental Science and Pollution Research, 2020, 27, 21517-21532.	2.7	15
32	Climatic, Edaphic and Biotic Controls over Soil δ13C and δ15N in Temperate Grasslands. Forests, 2020, 11, 433.	0.9	8
33	The intra- and inter-annual responses of soil respiration to climate extremes in a semiarid grassland. Geoderma, 2020, 378, 114629.	2.3	20
34	Short-term carbon and nitrogen dynamics in soil, litterfall and canopy of a suburban native forest subjected to prescribed burning in subtropical Australia. Journal of Soils and Sediments, 2019, 19, 3969-3981.	1.5	10
35	Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil and Tillage Research, 2019, 195, 104426.	2.6	94
36	Bioconversion of coal to methane by microbial communities from soil and from an opencast mine in the Xilingol grassland of northeast China. Biotechnology for Biofuels, 2019, 12, 236.	6.2	33

#	Article	IF	CITATIONS
37	Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology and Biochemistry, 2019, 139, 107611.	4.2	59
38	Phosphorus mediates soil prokaryote distribution pattern along a small-scale elevation gradient in Noijin Kangsang Peak, Tibetan Plateau. FEMS Microbiology Ecology, 2019, 95, .	1.3	17
39	Do different livestock dwellings on single grassland share similar faecal microbial communities?. Applied Microbiology and Biotechnology, 2019, 103, 5023-5037.	1.7	4
40	Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biology and Fertility of Soils, 2019, 55, 457-469.	2.3	58
41	Extreme-duration drought impacts on soil CO2 efflux are regulated by plant species composition. Plant and Soil, 2019, 439, 357-372.	1.8	15
42	Upland Soil Cluster Gamma dominates methanotrophic communities in upland grassland soils. Science of the Total Environment, 2019, 670, 826-836.	3.9	32
43	Ecological responses to heavy rainfall depend on seasonal timing and multiâ€year recurrence. New Phytologist, 2019, 223, 647-660.	3.5	41
44	Habitat filtering shapes the differential structure of microbial communities in the Xilingol grassland. Scientific Reports, 2019, 9, 19326.	1.6	14
45	Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. Journal of Arid Land, 2019, 11, 97-110.	0.9	12
46	Assessing soil extracellular DNA decomposition dynamics through plasmid amendment coupled with real-time PCR. Journal of Soils and Sediments, 2019, 19, 91-96.	1.5	10
47	Soil microbial communities in alpine grasslands on the Tibet Plateau and their influencing factors. Chinese Science Bulletin, 2019, 64, 2915-2927.	0.4	13
48	Long-Term Harvest Residue Retention Could Decrease Soil Bacterial Diversities Probably Due to Favouring Oligotrophic Lineages. Microbial Ecology, 2018, 76, 771-781.	1.4	18
49	The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment, 2018, 636, 142-151.	3.9	105
50	Fecal bacterial diversity of wild Sichuan snubâ€nosed monkeys (<i>Rhinopithecus roxellana</i>). American Journal of Primatology, 2018, 80, e22753.	0.8	17
51	Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes. Soil Biology and Biochemistry, 2018, 120, 145-152.	4.2	108
52	Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Global Change Biology, 2018, 24, 2093-2104.	4.2	51
53	Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures. Geoderma, 2018, 316, 1-10.	2.3	55
54	Total arsenic concentrations in Chinese children's urine by different geographic locations, ages, and genders. Environmental Geochemistry and Health, 2018, 40, 1027-1036.	1.8	11

#	Article	IF	CITATIONS
55	Using the DNDC model to simulate the potential of carbon budget in the meadow and desert steppes in Inner Mongolia, China. Journal of Soils and Sediments, 2018, 18, 63-75.	1.5	9
56	Precipitation drives the biogeographic distribution of soil fungal community in Inner Mongolian temperate grasslands. Journal of Soils and Sediments, 2018, 18, 222-228.	1.5	29
57	Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils. Science of the Total Environment, 2018, 639, 997-1006.	3.9	88
58	Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions. Geoderma, 2018, 330, 254-263.	2.3	41
59	Biodiversity patterns of dry grasslands in the Central Apennines (Italy) along a precipitation gradient: experiences from the 10th EDGG Field Workshop. Bulletin of the Eurasian Dry Grassland Group, 2018, , 25-41.	0.1	6
60	Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils. Environmental Science and Pollution Research, 2017, 24, 26485-26496.	2.7	15
61	Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 2017, 288, 79-96.	2.3	433
62	Reference levels and relationships of nine elements in first-spot morning urine and 24-h urine from 210 Chinese children. International Journal of Hygiene and Environmental Health, 2017, 220, 227-234.	2.1	23
63	Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss. Biogeochemistry, 2017, 136, 341-352.	1.7	44
64	Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem. Remote Sensing, 2016, 8, 391.	1.8	51
65	Assessing soil microbial respiration capacity using rDNA- or rRNA-based indices: a review. Journal of Soils and Sediments, 2016, 16, 2698-2708.	1.5	16
66	Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland. Atmospheric Environment, 2016, 142, 32-42.	1.9	49
67	Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiology Letters, 2016, 363, fnw168.	0.7	22
68	Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Scientific Reports, 2016, 6, 23488.	1.6	62
69	Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau. PLoS ONE, 2016, 11, e0156146.	1.1	14
70	A review on the methods for measuring total microbial activity in soil. Acta Ecologica Sinica, 2016, 36,	0.0	1
71	Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow. Ecology and Evolution, 2015, 5, 3995-4005.	0.8	15
72	16S rRNA-based bacterial community structure is a sensitive indicator of soil respiration activity. Journal of Soils and Sediments, 2015, 15, 1987-1990.	1.5	16

#	Article	IF	CITATIONS
73	Trends and potential cautions in food web research from a bibliometric analysis. Scientometrics, 2015, 105, 435-447.	1.6	18
74	A Review of the Physiological and Ecological Characteristics of Methanotrophs and Methanotrophic Community Diversity in the Natural Wetlands. Acta Ecologica Sinica, 2015, 35, .	0.0	0
75	Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE, 2014, 9, e88178.	1.1	98
76	Modeling Carbon Fluxes Using Multi-Temporal MODIS Imagery and CO2 Eddy Flux Tower Data in Zoige Alpine Wetland, South-West China. Wetlands, 2014, 34, 603-618.	0.7	30
77	Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 2014, 215, 1057-1066.	0.7	13
78	Estimation of root production and turnover in an alpine meadow: comparison of three measurement methods. Acta Ecologica Sinica, 2014, 34, .	0.0	1
79	Aerobic methanotroph diversity in <scp>R</scp> iganqiao peatlands on the <scp>Q</scp> inghai– <scp>T</scp> ibetan <scp>P</scp> lateau. Environmental Microbiology Reports, 2013, 5, 566-574.	1.0	55
80	Root size and soil environments determine root lifespan: evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 2013, 28, 493-501.	0.7	21
81	Effects of grazing on CO2 balance in a semiarid steppe: field observations and modeling. Journal of Soils and Sediments, 2013, 13, 1012-1023.	1.5	19
82	Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93, 2365-2376.	1.5	305
83	The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Plant Ecology, 2010, 209, 335-347.	0.7	41
84	Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns. Ecosystems, 0, , 1.	1.6	2
85	Effects of Nitrogen Addition on Plant Properties and Microbiomes Under High Phosphorus Addition Level in the Alpine Steppe. Frontiers in Plant Science, 0, 13, .	1.7	5