List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1392069/publications.pdf Version: 2024-02-01

Διαίρα Κιίρ

#	Article	IF	CITATIONS
1	Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, 18, 1081-1083.	14.8	1,041
2	Protein Kinase B/Akt Participates in GLUT4 Translocation by Insulin in L6 Myoblasts. Molecular and Cellular Biology, 1999, 19, 4008-4018.	2.3	534
3	Glucose Transport and Glucose Transporters in Muscle and Their Metabolic Regulation. Diabetes Care, 1990, 13, 228-243.	8.6	331
4	Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB Journal, 1994, 8, 43-53.	0.5	323
5	Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Letters, 1987, 224, 224-230.	2.8	312
6	The cell biology of systemic insulin function. Journal of Cell Biology, 2018, 217, 2273-2289.	5.2	270
7	Minireview: Recent Developments in the Regulation of Glucose Transporter-4 Traffic: New Signals, Locations, and Partners. Endocrinology, 2005, 146, 5071-5078.	2.8	244
8	Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochemical Journal, 2008, 413, 201-215.	3.7	241
9	Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E453-E465.	3.5	229
10	Thirty sweet years of GLUT4. Journal of Biological Chemistry, 2019, 294, 11369-11381.	3.4	223
11	NOD1 Activators Link Innate Immunity to Insulin Resistance. Diabetes, 2011, 60, 2206-2215.	0.6	213
12	Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends in Endocrinology and Metabolism, 2017, 28, 597-611.	7.1	210
13	Glucose transporter 4: cycling, compartments and controversies. EMBO Reports, 2005, 6, 1137-1142.	4.5	206
14	Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends in Endocrinology and Metabolism, 2006, 17, 72-78.	7.1	205
15	The Rab GTPase-Activating Protein AS160 Integrates Akt, Protein Kinase C, and AMP-Activated Protein Kinase Signals Regulating GLUT4 Traffic. Diabetes, 2007, 56, 414-423.	0.6	203
16	GLUT4 translocation by insulin in intact muscle cells: detection by a fast and quantitative assay. FEBS Letters, 1998, 427, 193-197.	2.8	197
17	Ceramide- and Oxidant-Induced Insulin Resistance Involve Loss of Insulin-Dependent Rac-Activation and Actin Remodeling in Muscle Cells. Diabetes, 2007, 56, 394-403.	0.6	179
18	Turning Signals On and Off: GLUT4 Traffic in the Insulin-Signaling Highway. Physiology, 2005, 20, 271-284.	3.1	178

#	Article	IF	CITATIONS
19	Actin filaments participate in the relocalization of phosphatidylinositol3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochemical Journal, 1998, 331, 917-928.	3.7	164
20	Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19909-19914.	7.1	159
21	Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. Journal of Clinical Investigation, 2001, 108, 371-381.	8.2	159
22	Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK). Journal of Biological Chemistry, 2015, 290, 16979-16988.	3.4	149
23	Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Research, 2017, 27, 1309-1326.	12.0	148
24	Proâ€Inflammatory macrophages increase in skeletal muscle of high fatâ€Fed mice and correlate with metabolic risk markers in humans. Obesity, 2014, 22, 747-757.	3.0	144
25	Opposite Translational Control of GLUT1 and GLUT4 Glucose Transporter mRNAs in Response to Insulin. Journal of Biological Chemistry, 1999, 274, 33085-33091.	3.4	142
26	Endocytosis, Recycling, and Regulated Exocytosis of Glucose Transporter 4. Biochemistry, 2011, 50, 3048-3061.	2.5	138
27	Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochemical and Biophysical Research Communications, 2007, 353, 1074-1079.	2.1	137
28	Differential Contribution of Insulin Receptor Substrates 1 Versus 2 to Insulin Signaling and Glucose Uptake in L6 Myotubes. Journal of Biological Chemistry, 2005, 280, 19426-19435.	3.4	136
29	Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. American Journal of Physiology - Cell Physiology, 2014, 306, C879-C886.	4.6	136
30	Skeletal Muscle Cells and Adipocytes Differ in Their Reliance on TC10 and Rac for Insulin-Induced Actin Remodeling. Molecular Endocrinology, 2004, 18, 359-372.	3.7	135
31	Exercise-Induced Increase in Glucose Transporters in Plasma Membranes of Rat Skeletal Muscle*. Endocrinology, 1989, 124, 449-454.	2.8	133
32	Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochemical and Biophysical Research Communications, 1991, 175, 652-659.	2.1	132
33	Regulation of the Na+/K+-ATPase by insulin: Why and how?. , 1998, 182, 121-133.		132
34	GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochemical Journal, 2001, 359, 639-649.	3.7	129
35	Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation. American Journal of Physiology - Cell Physiology, 2008, 295, C1016-C1025.	4.6	128
36	Sustained Exposure of L6 Myotubes to High Glucose and Insulin Decreases Insulin-Stimulated GLUT4 Translocation but Upregulates GLUT4 Activity. Diabetes, 2002, 51, 2090-2098.	0.6	126

#	Article	IF	CITATIONS
37	Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle. Diabetes, 2013, 62, 1139-1151.	0.6	126
38	The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metabolism, 2021, 33, 758-780.	16.2	124
39	Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cellular Signalling, 2011, 23, 1546-1554.	3.6	118
40	Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cellular Signalling, 2014, 26, 323-331.	3.6	117
41	Cellubrevin Is a Resident Protein of Insulin-sensitive GLUT4 Glucose Transporter Vesicles in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1995, 270, 8233-8240.	3.4	112
42	Insulin Activates a p21-activated Kinase in Muscle Cells via Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1996, 271, 19664-19667.	3.4	112
43	Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia, 2003, 46, 649-658.	6.3	111
44	Troglitazone causes acute mitochondrial membrane depolarisation and an AMPK-mediated increase in glucose phosphorylation in muscle cells. Diabetologia, 2005, 48, 954-966.	6.3	109
45	Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. Science, 2019, 366, 460-467.	12.6	109
46	Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2010, 3, 173.	2.4	108
47	Insulin-dependent Interactions of Proteins with GLUT4 Revealed through Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)*. Journal of Proteome Research, 2006, 5, 64-75.	3.7	106
48	VAMP2, but Not VAMP3/Cellubrevin, Mediates Insulin-dependent Incorporation of GLUT4 into the Plasma Membrane of L6 Myoblasts. Molecular Biology of the Cell, 2000, 11, 2403-2417.	2.1	102
49	Electrical Stimuli Release ATP to Increase GLUT4 Translocation and Glucose Uptake via PI3Kγ-Akt-AS160 in Skeletal Muscle Cells. Diabetes, 2013, 62, 1519-1526.	0.6	102
50	GLUT4 Vesicle Recruitment and Fusion Are Differentially Regulated by Rac, AS160, and Rab8A in Muscle Cells. Journal of Biological Chemistry, 2008, 283, 27208-27219.	3.4	100
51	Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells. American Journal of Physiology - Cell Physiology, 2000, 279, C877-C890.	4.6	94
52	Muscle insulin resistance: assault by lipids, cytokines and local macrophages. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 382-390.	2.5	94
53	The many ways to regulate glucose transporter 4This paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference– Muscles as Molecular and Metabolic Machines, and has undergone the Journal's usual peer review process	1.9	93
54	NOD2 Activation Induces Muscle Cell-Autonomous Innate Immune Responses and Insulin Resistance. Endocrinology, 2010, 151, 5624-5637.	2.8	93

#	Article	IF	CITATIONS
55	Clathrinâ€Dependent and Independent Endocytosis of Glucose Transporter 4 (GLUT4) in Myoblasts: Regulation by Mitochondrial Uncoupling. Traffic, 2008, 9, 1173-1190.	2.7	90
56	Hyperosmolarity Reduces GLUT4 Endocytosis and Increases Its Exocytosis from a VAMP2-independent Pool in L6 Muscle Cells. Journal of Biological Chemistry, 2001, 276, 22883-22891.	3.4	87
57	Rac1 governs exerciseâ€stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Journal of Physiology, 2016, 594, 4997-5008.	2.9	87
58	Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Biochimica Et Biophysica Acta - Biomembranes, 1982, 687, 265-280.	2.6	86
59	Maturation of the Regulation of GLUT4 Activity by p38 MAPK during L6 Cell Myogenesis. Journal of Biological Chemistry, 2003, 278, 17953-17962.	3.4	85
60	Insulin Accelerates Inter-endosomal GLUT4 Traffic via Phosphatidylinositol 3-Kinase and Protein Kinase B. Journal of Biological Chemistry, 2001, 276, 44212-44221.	3.4	83
61	Acute and chronic signals controlling glucose transport in skeletal muscle. Journal of Cellular Biochemistry, 1992, 48, 51-60.	2.6	81
62	Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein of 33ÂkDa (VAP-33): a broadly expressed protein that binds to VAMP. Biochemical Journal, 1998, 333, 247-251.	3.7	81
63	Role of the actin cytoskeleton in insulin action. Microscopy Research and Technique, 1999, 47, 79-92.	2.2	79
64	Endothelial cell barriers: Transport of molecules between blood and tissues. Traffic, 2019, 20, 390-403.	2.7	76
65	Differential Effects of Phosphatidylinositol 3-Kinase Inhibition on Intracellular Signals Regulating GLUT4 Translocation and Glucose Transport. Journal of Biological Chemistry, 2001, 276, 46079-46087.	3.4	75
66	Arp2/3- and Cofilin-coordinated Actin Dynamics Is Required for Insulin-mediated GLUT4 Translocation to the Surface of Muscle Cells. Molecular Biology of the Cell, 2010, 21, 3529-3539.	2.1	75
67	Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle. FEBS Letters, 1990, 261, 256-260.	2.8	74
68	Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1276-E1286.	3.5	73
69	Decrease in Glucose Transporter Number in Skeletal Muscle of Mildly Diabetic (Streptozotocin-Treated) Rats*. Endocrinology, 1989, 125, 890-897.	2.8	72
70	Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic Ca ²⁺ and cPKC. American Journal of Physiology - Cell Physiology, 1998, 275, C1487-C1497.	4.6	71
71	Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Molecular Biology of the Cell, 2015, 26, 740-750.	2.1	71
72	Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Archives of Physiology and Biochemistry, 2009, 115, 176-190.	2.1	70

#	Article	IF	CITATIONS
73	Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and Insulin Resistance. Cell Reports, 2017, 18, 2415-2426.	6.4	70
74	Expression of β subunit isoforms of the Na+,K+-ATPase is muscle type-specific. FEBS Letters, 1993, 328, 253-258.	2.8	68
75	Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomal and an insulin-sensitive GLUT4 compartment. Biochemical Journal, 1997, 325, 727-732.	3.7	68
76	Perturbation of Dynamin II with an Amphiphysin SH3 Domain Increases GLUT4 Glucose Transporters at the Plasma Membrane in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1998, 273, 8169-8176.	3.4	67
77	Intracellular Segregation of Phosphatidylinositol-3,4,5-Trisphosphate by Insulin-Dependent Actin Remodeling in L6 Skeletal Muscle Cells. Molecular and Cellular Biology, 2003, 23, 4611-4626.	2.3	67
78	Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Molecular Biology of the Cell, 2014, 25, 1159-1170.	2.1	67
79	Reciprocal Regulation of Endocytosis and Metabolism. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016964-a016964.	5.5	65
80	Regulation of cell surface GLUT1, GLUT3, and GLUT4 by insulin and IGF-I in L6 myotubes. FEBS Letters, 1995, 368, 19-22.	2.8	63
81	A Functional Role for VAP-33 in Insulin-Stimulated GLUT4 Traffic. Traffic, 2000, 1, 512-521.	2.7	62
82	Subcellular distribution and immunocytochemical localization of Na,K-ATPase subunit isoforms in human skeletal muscle. Molecular Membrane Biology, 1994, 11, 255-262.	2.0	61
83	Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles. Molecular Biology of the Cell, 2012, 23, 4065-4078.	2.1	61
84	TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipidinduced inflammation and insulin resistance in muscle cells. Bioscience Reports, 2013, 33, 37-47.	2.4	60
85	Intracellular Delivery of Phosphatidylinositol (3,4,5)-Trisphosphate Causes Incorporation of Glucose Transporter 4 into the Plasma Membrane of Muscle and Fat Cells without Increasing Glucose Uptake. Journal of Biological Chemistry, 2004, 279, 32233-32242.	3.4	59
86	Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E35-E44.	3.5	59
87	GLUT-4myc ectopic expression in L6 myoblasts generates a GLUT-4-specific pool conferring insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E572-E578.	3.5	58
88	The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. Journal of Cell Science, 2009, 122, 2283-2291.	2.0	57
89	Insulin and Hypertonicity Recruit GLUT4 to the Plasma Membrane of Muscle Cells by Using N-Ethylmaleimide-sensitive Factor-dependent SNARE Mechanisms but Different v-SNAREs: Role of TI-VAMP. Molecular Biology of the Cell, 2004, 15, 5565-5573.	2.1	56
90	Insulin-mediated translocation of glucose transporters from intracellular membranes to plasma membranes: Sole mechanism of stimulation of glucose transport in L6 muscle cells. Biochemical and Biophysical Research Communications, 1988, 157, 1329-1335.	2.1	55

#	Article	IF	CITATIONS
91	Unique mechanism of GLUT3 glucose transporter regulation by prolonged energy demand: increased protein half-life. Biochemical Journal, 1998, 333, 713-718.	3.7	54
92	Need for GLUT4 Activation to Reach Maximum Effect of Insulin-Mediated Glucose Uptake in Brown Adipocytes Isolated From GLUT4myc-Expressing Mice. Diabetes, 2002, 51, 2719-2726.	0.6	54
93	Insulin Regulates the Membrane Arrival, Fusion, and C-terminal Unmasking of Glucose Transporter-4 via Distinct Phosphoinositides. Journal of Biological Chemistry, 2005, 280, 28792-28802.	3.4	54
94	Insulin elicits a ROS-activated and an IP3-dependent Ca2+ release; both impinge on GLUT4 translocation. Journal of Cell Science, 2014, 127, 1911-23.	2.0	54
95	SNAP23 promotes insulin-dependent glucose uptake in 3T3-L1 adipocytes: possible interaction with cytoskeleton. American Journal of Physiology - Cell Physiology, 1999, 276, C1108-C1114.	4.6	53
96	Acute and long-term effects of insulin-like growth factor I on glucose transporters in muscle cells Translocation and biosynthesis. FEBS Letters, 1992, 298, 285-290.	2.8	52
97	Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts. Journal of Cell Science, 2004, 117, 5447-5455.	2.0	52
98	Palmitate- and lipopolysaccharide-activated macrophages evoke contrasting insulin responses in muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E37-E46.	3.5	51
99	Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells. Biochemical Pharmacology, 2014, 92, 380-388.	4.4	51
100	Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle. Archives of Biochemistry and Biophysics, 1987, 253, 279-286.	3.0	50
101	GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochemical Journal, 2009, 419, 475-484.	3.7	49
102	Palmitate-Activated Macrophages Confer Insulin Resistance to Muscle Cells by a Mechanism Involving Protein Kinase C Î, and Îμ. PLoS ONE, 2011, 6, e26947.	2.5	49
103	Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E825-E835.	3.5	49
104	Fish Glucose Transporter (GLUT)-4 Differs from Rat GLUT4 in Its Traffic Characteristics but Can Translocate to the Cell Surface in Response to Insulin in Skeletal Muscle Cells. Endocrinology, 2007, 148, 5248-5257.	2.8	48
105	α-Actinin-4 Is Selectively Required for Insulin-induced GLUT4 Translocation. Journal of Biological Chemistry, 2008, 283, 25115-25123.	3.4	48
106	Insulin-induced decrease in 5′-nucleotidase activity in skeletal muscle membranes. FEBS Letters, 1988, 238, 419-423.	2.8	47
107	Contraction-related stimuli regulate GLUT4 traffic in C ₂ C ₁₂ -GLUT4 <i>myc</i> skeletal muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 2010, 2 <u>98, E1058-E1071.</u>	3.5	44
108	A complex of Rab13 with MICAL-L2 and α-actinin-4 is essential for insulin-dependent GLUT4 exocytosis. Molecular Biology of the Cell, 2016, 27, 75-89.	2.1	44

#	Article	lF	CITATIONS
109	Rho GTPases—Emerging Regulators of Glucose Homeostasis and Metabolic Health. Cells, 2019, 8, 434.	4.1	44
110	The glucose transport system of muscle plasma membranes: Characterization by means of [3H]cytochalasin B binding. Archives of Biochemistry and Biophysics, 1983, 221, 175-187.	3.0	43
111	The Pleckstrin Homology (PH) Domain-Interacting Protein Couples the Insulin Receptor Substrate 1 PH Domain to Insulin Signaling Pathways Leading to Mitogenesis and GLUT4 Translocation. Molecular and Cellular Biology, 2002, 22, 7325-7336.	2.3	42
112	Effect of Diabetes on Glucoregulation: From glucose transporters to glucose metabolism in vivo. Diabetes Care, 1992, 15, 1747-1766.	8.6	41
113	Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radical Biology and Medicine, 2020, 146, 264-274.	2.9	41
114	Rac-1 Superactivation Triggers Insulin-independent Glucose Transporter 4 (GLUT4) Translocation That Bypasses Signaling Defects Exerted by c-Jun N-terminal kinase (JNK)- and Ceramide-induced Insulin Resistance. Journal of Biological Chemistry, 2013, 288, 17520-17531.	3.4	40
115	Nucleotides Released From Palmitate-Challenged Muscle Cells Through Pannexin-3 Attract Monocytes. Diabetes, 2014, 63, 3815-3826.	0.6	40
116	A Transgenic Mouse Model to Study Glucose Transporter 4myc Regulation in Skeletal Muscle. Endocrinology, 2009, 150, 1935-1940.	2.8	39
117	Selective regulation of the perinuclear distribution of glucose transporter 4 (GLUT4) by insulin signals in muscle cells. European Journal of Cell Biology, 2008, 87, 337-351.	3.6	38
118	Ready, set, internalize: mechanisms and regulation of GLUT4 endocytosis. Bioscience Reports, 2009, 29, 1-11.	2.4	35
119	Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages. Cell Communication and Signaling, 2012, 10, 30.	6.5	35
120	Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide. Biology Open, 2014, 3, 314-325.	1.2	35
121	Contracting C ₂ C ₁₂ myotubes release CCL2 in an NF-ήB-dependent manner to induce monocyte chemoattraction. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E160-E170.	3.5	33
122	Cellular location of insulin-triggered signals and implications for glucose uptake. Pflugers Archiv European Journal of Physiology, 2006, 451, 499-510.	2.8	31
123	Conditioned medium from hypoxia-treated adipocytes renders muscle cells insulin resistant. European Journal of Cell Biology, 2011, 90, 1000-1015.	3.6	31
124	Electrical pulse stimulation induces GLUT4 translocation in C ₂ C ₁₂ myotubes that depends on Rab8A, Rab13, and Rab14. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E478-E493.	3.5	31
125	High Leptin Levels Acutely Inhibit Insulin-Stimulated Glucose Uptake without Affecting Glucose Transporter 4 Translocation in L6 Rat Skeletal Muscle Cells. Endocrinology, 2001, 142, 4806-4812.	2.8	31
126	Exercise- and Insulin-Stimulated Muscle Glucose Transport: Distinct Mechanisms of Regulation. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 129-151.	1.7	28

#	Article	IF	CITATIONS
127	Insulin increases plasma membrane content and reduces phosphorylation of Na ⁺ -K ⁺ pump α ₁ -subunit in HEK-293 cells. American Journal of Physiology - Cell Physiology, 2001, 281, C1797-C1803.	4.6	27
128	Opposite Effect of JAK2 on Insulin-Dependent Activation of Mitogen-Activated Protein Kinases and Akt in Muscle Cells: Possible Target to Ameliorate Insulin Resistance. Diabetes, 2006, 55, 942-951.	0.6	27
129	Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise. Acta Physiologica, 2009, 196, 27-35.	3.8	27
130	Communication Between Autophagy and Insulin Action: At the Crux of Insulin Action-Insulin Resistance?. Frontiers in Cell and Developmental Biology, 2021, 9, 708431.	3.7	27
131	NOD2 activation induces oxidative stress contributing to mitochondrial dysfunction and insulin resistance in skeletal muscle cells. Free Radical Biology and Medicine, 2015, 89, 158-169.	2.9	26
132	GLUT-4 translocation in skeletal muscle studied with a cell-free assay: involvement of phospholipase D. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E608-E618.	3.5	25
133	Regulation of amino acid uptake by phorbol esters and hypertonic solutions in rat thymocytes. Journal of Cellular Physiology, 1986, 127, 244-252.	4.1	24
134	Temporal activation of p70 S6 kinase and Akt1 by insulin: PI 3-kinase-dependent and -independent mechanisms. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E618-E625.	3.5	24
135	Glucose Rapidly Decreases Plasma Membrane GLUT4 Content in Rat Skeletal Muscle. Endocrine, 1999, 10, 13-18.	2.2	24
136	Insulin uptake and action in microvascular endothelial cells of lymphatic and blood origin. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E204-E217.	3.5	24
137	Regulation of amino acid transport in L6 muscle cells: I. Stimulation of transport system a by amino acid deprivation. Journal of Cellular Physiology, 1982, 112, 229-236.	4.1	23
138	The GLUT4 glucose transporter and theα2subunit of the Na+,K+-ATPase do not localize to the same intracellular vesicles in rat skeletal muscle. FEBS Letters, 1995, 366, 109-114.	2.8	23
139	Deficiency of the autophagy gene ATG16L1 induces insulin resistance through KLHL9/KLHL13/CUL3-mediated IRS1 degradation. Journal of Biological Chemistry, 2019, 294, 16172-16185.	3.4	22
140	Bone marrow adipose cells – cellular interactions and changes with obesity. Journal of Cell Science, 2020, 133, .	2.0	22
141	NOD1: An Interface Between Innate Immunity and Insulin Resistance. Endocrinology, 2019, 160, 1021-1030.	2.8	21
142	Nucleotides released from palmitate-activated murine macrophages attract neutrophils. Journal of Biological Chemistry, 2020, 295, 4902-4911.	3.4	21
143	The Proinflammatory Cytokine Tumor Necrosis Factor- $\hat{1}\pm$ Increases the Amount of Glucose Transporter-4 at the Surface of Muscle Cells Independently of Changes in Interleukin-6. Endocrinology, 2008, 149, 1880-1889.	2.8	20
144	Endothelial Transcytosis of Insulin: Does It Contribute to Insulin Resistance?. Physiology, 2016, 31, 336-345.	3.1	20

#	Article	IF	CITATIONS
145	The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. ELife, 2015, 4, .	6.0	20
146	Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes. ELife, 2020, 9, .	6.0	20
147	Role of kinases in insulin stimulation of glucose transport. Journal of Membrane Biology, 1989, 111, 1-23.	2.1	19
148	Opposite Effects of Insulin on Focal Adhesion Proteins in 3T3-L1 Adipocytes and in Cells Overexpressing the Insulin Receptor. Molecular Biology of the Cell, 1998, 9, 3057-3069.	2.1	19
149	Participation of PI3K and atypical PKC in Na ⁺ -K ⁺ -pump stimulation by IGF-I in VSMC. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H2109-H2116.	3.2	19
150	Mice lacking NOX2 are hyperphagic and store fat preferentially in the liver. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1341-E1353.	3.5	19
151	Documenting GLUT4 Exocytosis and Endocytosis in Muscle Cell Monolayers. Current Protocols in Cell Biology, 2010, 46, Unit 15.15.	2.3	18
152	Insulin binding to differentiating muscle cells in culture. Canadian Journal of Biochemistry and Cell Biology, 1983, 61, 644-649.	1.3	16
153	Dexamethasone stimulates the expression of GLUT1 and GLUT4 proteins via different signalling pathways in L6 skeletal muscle cells. FEBS Letters, 1998, 421, 120-124.	2.8	16
154	Sphingolipid changes do not underlie fatty acid-evoked GLUT4 insulin resistance nor inflammation signals in muscle cells[S]. Journal of Lipid Research, 2018, 59, 1148-1163.	4.2	15
155	Herpud1 impacts insulin-dependent glucose uptake in skeletal muscle cells by controlling the Ca2+-calcineurin-Akt axis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1653-1662.	3.8	13
156	Regulation of amino acid transport in L6 myoblasts. II. Different chemical properties of transport after amino acid deprivation. Journal of Cellular Physiology, 1982, 113, 56-66.	4.1	12
157	To be or not to be: Regulation of the Intrinsic Activity of GLUT4. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2005, 5, 175-187.	0.2	12
158	<i>Shuttling glucose across brain microvessels, with a little help from GLUT1 and AMP kinase</i> . Focus on "AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress― American Journal of Physiology - Cell Physiology, 2012, 303, C803-C805.	4.6	12
159	Putting Rac1 on the Path to Glucose Uptake. Diabetes, 2013, 62, 1831-1832.	0.6	11
160	Deconstructing metabolic inflammation using cellular systems. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E339-E347.	3.5	11
161	Desperately seeking sugar: glial cells as hypoglycemia sensors. Journal of Clinical Investigation, 2005, 115, 3403-3405.	8.2	11
162	The free cytoplasmic Ca2+ levels in duchenne muscular dystrophy lymphocytes. Muscle and Nerve, 1985, 8, 317-320.	2.2	10

#	Article	IF	CITATIONS
163	Dissecting signalling by individual Akt/PKB isoforms, three steps at once. Biochemical Journal, 2015, 470, e13-e16.	3.7	10
164	Tissue-specific murine neutrophil activation states in health and inflammation. Journal of Leukocyte Biology, 2021, 110, 187-195.	3.3	10
165	Insulin stimulation of glucose uptake and the transmembrane potential of muscle cells in culture. FEBS Letters, 1986, 205, 11-14.	2.8	9
166	Regulation of GLUT4 activity in myotubes by 3-O-methyl-d-glucose. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1900-1910.	2.6	8
167	Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT4 translocation. Biochemical Journal, 2021, 478, 407-422.	3.7	8
168	GLUT4-overexpressing engineered muscle constructs as a therapeutic platform to normalize glycemia in diabetic mice. Science Advances, 2021, 7, eabg3947.	10.3	8
169	Pannexin 3 deletion reduces fat accumulation and inflammation in a sex-specific manner. International Journal of Obesity, 2022, 46, 726-738.	3.4	8
170	Role of calcium in serum-stimulation of hexose transport in muscle cells. FEBS Letters, 1983, 162, 329-333.	2.8	7
171	GLUT4 Translocation in Single Muscle Cells in Culture: Epitope Detection by Immunofluorescence. Methods in Molecular Biology, 2018, 1713, 175-192.	0.9	6
172	Supportive data on the regulation of GLUT4 activity by 3-O-methyl-D-glucose. Data in Brief, 2017, 14, 329-336.	1.0	5
173	Na+ -dependent proline transport in isolated membrane vesicles from the L6 muscle cell line. FEBS Letters, 1983, 152, 171-174.	2.8	2
174	Insulin-Mediated Regulation of Glucose Metabolism. , 2005, , 63-85.		2
175	Deprogram and reprogram to solve the riddle of insulin resistance. Journal of Clinical Investigation, 2021, 131, .	8.2	2
176	Fragmentation and roles of junctophilin1 in muscle of patients with cytosolic leak of stored calcium. Journal of General Physiology, 2022, 154, .	1.9	2
177	Distinct insulin-stimulated signalling pathways regulating translocation and activation of glucose transporters. Biochemical Society Transactions, 2000, 28, A447-A447.	3.4	0
178	GLUT4 Traffic: Perspectives from Cultured Muscle Cells. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2005, 5, 167-173.	0.2	0
179	Homeostasis — the Walter B. Cannon's Legacy — Applied to the Metabolic Syndrome and the Scientific Enterprise. Physiology, 2016, 31, 246-247.	3.1	0
180	A Century of Insulin: Outstanding Physiological Breakthroughs. Physiology, 2021, 36, 197-200.	3.1	0

#	Article	IF	CITATIONS
181	NAD(P)H oxidaseâ€dpendent H 2 O 2 production and RyRâ€IP 3 R activation are required for insulin induced GLUT4 translocation and glucose uptake in skeletal muscle cells. FASEB Journal, 2012, 26, 758.5.	0.5	0
182	Novel mechanisms to ATPâ€dependent glucose uptake in skeletal muscle cells. FASEB Journal, 2012, 26, lb715.	0.5	0
183	Transcytosis of insulin across microvascular endothelium. FASEB Journal, 2013, 27, 1154.11.	0.5	0
184	Autophagyâ€Related Protein 16L1 (Atg16L1) Depletion Induces Insulin Resistance Through Decreased IRS Expression. FASEB Journal, 2018, 32, lb419.	0.5	0
185	Atg16L1 Knockout Induces Insulin Resistance through Proteasomal IRS1 Degradation, Mediated by the Induction of ER Stress. FASEB Journal, 2019, 33, 719.10.	0.5	0
186	Intracellular traffic and activation of the muscle glucose transporter. Journal of Muscle Research and Cell Motility, 2004, 25, 595-6.	2.0	0