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Endocrinology, 2010, 151, 5624-5637. 2.8 93



5

Amira Klip

# Article IF Citations

55 Clathrinâ€•Dependent and Independent Endocytosis of Glucose Transporter 4 (GLUT4) in Myoblasts:
Regulation by Mitochondrial Uncoupling. Traffic, 2008, 9, 1173-1190. 2.7 90

56 Hyperosmolarity Reduces GLUT4 Endocytosis and Increases Its Exocytosis from a VAMP2-independent
Pool in L6 Muscle Cells. Journal of Biological Chemistry, 2001, 276, 22883-22891. 3.4 87

57 Rac1 governs exerciseâ€•stimulated glucose uptake in skeletal muscle through regulation of GLUT4
translocation in mice. Journal of Physiology, 2016, 594, 4997-5008. 2.9 87

58 Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding
sites. Biochimica Et Biophysica Acta - Biomembranes, 1982, 687, 265-280. 2.6 86

59 Maturation of the Regulation of GLUT4 Activity by p38 MAPK during L6 Cell Myogenesis. Journal of
Biological Chemistry, 2003, 278, 17953-17962. 3.4 85

60 Insulin Accelerates Inter-endosomal GLUT4 Traffic via Phosphatidylinositol 3-Kinase and Protein Kinase
B. Journal of Biological Chemistry, 2001, 276, 44212-44221. 3.4 83

61 Acute and chronic signals controlling glucose transport in skeletal muscle. Journal of Cellular
Biochemistry, 1992, 48, 51-60. 2.6 81

62
Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated
protein of 33Â kDa (VAP-33): a broadly expressed protein that binds to VAMP. Biochemical Journal, 1998,
333, 247-251.

3.7 81

63 Role of the actin cytoskeleton in insulin action. Microscopy Research and Technique, 1999, 47, 79-92. 2.2 79

64 Endothelial cell barriers: Transport of molecules between blood and tissues. Traffic, 2019, 20, 390-403. 2.7 76

65 Differential Effects of Phosphatidylinositol 3-Kinase Inhibition on Intracellular Signals Regulating
GLUT4 Translocation and Glucose Transport. Journal of Biological Chemistry, 2001, 276, 46079-46087. 3.4 75

66 Arp2/3- and Cofilin-coordinated Actin Dynamics Is Required for Insulin-mediated GLUT4 Translocation
to the Surface of Muscle Cells. Molecular Biology of the Cell, 2010, 21, 3529-3539. 2.1 75

67 Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle.
FEBS Letters, 1990, 261, 256-260. 2.8 74

68 Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of
AMPK. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1276-E1286. 3.5 73

69 Decrease in Glucose Transporter Number in Skeletal Muscle of Mildly Diabetic
(Streptozotocin-Treated) Rats*. Endocrinology, 1989, 125, 890-897. 2.8 72

70 Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic
Ca<sup>2+</sup>and cPKC. American Journal of Physiology - Cell Physiology, 1998, 275, C1487-C1497. 4.6 71

71 Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across
microvascular endothelial cells. Molecular Biology of the Cell, 2015, 26, 740-750. 2.1 71

72 Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells.
Archives of Physiology and Biochemistry, 2009, 115, 176-190. 2.1 70



6

Amira Klip

# Article IF Citations

73 Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and
Insulin Resistance. Cell Reports, 2017, 18, 2415-2426. 6.4 70

74 Expression of Î² subunit isoforms of the Na+,K+-ATPase is muscle type-specific. FEBS Letters, 1993, 328,
253-258. 2.8 68

75
Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle:
evidence for an endosomal and an insulin-sensitive GLUT4 compartment. Biochemical Journal, 1997, 325,
727-732.

3.7 68

76 Perturbation of Dynamin II with an Amphiphysin SH3 Domain Increases GLUT4 Glucose Transporters at
the Plasma Membrane in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1998, 273, 8169-8176. 3.4 67

77 Intracellular Segregation of Phosphatidylinositol-3,4,5-Trisphosphate by Insulin-Dependent Actin
Remodeling in L6 Skeletal Muscle Cells. Molecular and Cellular Biology, 2003, 23, 4611-4626. 2.3 67

78 Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells.
Molecular Biology of the Cell, 2014, 25, 1159-1170. 2.1 67

79 Reciprocal Regulation of Endocytosis and Metabolism. Cold Spring Harbor Perspectives in Biology,
2014, 6, a016964-a016964. 5.5 65

80 Regulation of cell surface GLUT1, GLUT3, and GLUT4 by insulin and IGF-I in L6 myotubes. FEBS Letters,
1995, 368, 19-22. 2.8 63

81 A Functional Role for VAP-33 in Insulin-Stimulated GLUT4 Traffic. Traffic, 2000, 1, 512-521. 2.7 62
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