Shixuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1391727/publications.pdf Version: 2024-02-01

SHIVIIAN CHEN

#	Article	IF	CITATIONS
1	Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Advanced Drug Delivery Reviews, 2018, 132, 188-213.	13.7	285
2	Recent advances in electrospun nanofibers for wound healing. Nanomedicine, 2017, 12, 1335-1352.	3.3	282
3	Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Scientific Reports, 2016, 5, 18104.	3.3	135
4	Dissolvable Microneedles Coupled with Nanofiber Dressings Eradicate Biofilms <i>via</i> Effectively Delivering a Database-Designed Antimicrobial Peptide. ACS Nano, 2020, 14, 11775-11786.	14.6	129
5	Emerging Roles of Electrospun Nanofibers in Cancer Research. Advanced Healthcare Materials, 2018, 7, e1701024.	7.6	114
6	Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanutsâ€) and their potential applications in hemostasis. Biomaterials, 2018, 179, 46-59.	11.4	96
7	New forms of electrospun nanofiber materials for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 3733-3746.	5.8	90
8	Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers, 2020, 12, 939.	4.5	84
9	Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomaterialia, 2020, 108, 153-167.	8.3	74
10	CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomaterialia, 2018, 68, 237-248.	8.3	72
11	Electrospraying Electrospun Nanofiber Segments into Injectable Microspheres for Potential Cell Delivery. ACS Applied Materials & Interfaces, 2018, 10, 25069-25079.	8.0	64
12	Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine. Nano Letters, 2019, 19, 2059-2065.	9.1	56
13	A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. Journal of Materials Chemistry B, 2015, 3, 6798-6804.	5.8	53
14	A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing. Journal of Materials Chemistry B, 2019, 7, 2954-2961.	5.8	51
15	Activin B Promotes BMSC-Mediated Cutaneous Wound Healing by Regulating Cell Migration via the JNK—ERK Signaling Pathway. Cell Transplantation, 2014, 23, 1061-1073.	2.5	49
16	Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1435-1445.	3.3	49
17	Converting 2D Nanofiber Membranes to 3D Hierarchical Assemblies with Structural and Compositional Gradients Regulates Cell Behavior. Advanced Materials, 2020, 32, e2003754.	21.0	49
18	Study of stiffness effects of poly(amidoamine)–poly(n-isopropyl acrylamide) hydrogel on wound healing. Colloids and Surfaces B: Biointerfaces, 2016, 140, 574-582.	5.0	46

SHIXUAN CHEN

#	Article	IF	CITATIONS
19	Peptide-Modified Chitosan Hydrogels Accelerate Skin Wound Healing by Promoting Fibroblast Proliferation, Migration, and Secretion. Cell Transplantation, 2017, 26, 1331-1340.	2.5	45
20	Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. Science Advances, 2021, 7, .	10.3	39
21	Fast transformation of 2D nanofiber membranes into pre-molded 3D scaffolds with biomimetic and oriented porous structure for biomedical applications. Applied Physics Reviews, 2020, 7, 021406.	11.3	33
22	Engineering Biomimetic Nanofiber Microspheres with Tailored Size, Predesigned Structure, and Desired Composition via Gas Bubble–Mediated Coaxial Electrospray. Small, 2020, 16, e1907393.	10.0	26
23	Ultra-absorptive Nanofiber Swabs for Improved Collection and Test Sensitivity of SARS-CoV-2 and other Biological Specimens. Nano Letters, 2021, 21, 1508-1516.	9.1	24
24	Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 22, 102081.	3.3	22
25	Eluted 25-hydroxyvitamin D3 from radially aligned nanofiber scaffolds enhances cathelicidin production while reducing inflammatory response in human immune system-engrafted mice. Acta Biomaterialia, 2019, 97, 187-199.	8.3	20
26	Nanofiber-based sutures induce endogenous antimicrobial peptide. Nanomedicine, 2017, 12, 2597-2609.	3.3	16
27	Minimally Invasive Delivery of 3D Shape Recoverable Constructs with Ordered Structures for Tissue Repair. ACS Biomaterials Science and Engineering, 2021, 7, 2204-2211.	5.2	16
28	Preparation of a small intestinal submucosa modified polypropylene hybrid mesh via a mussel-inspired polydopamine coating for pelvic reconstruction. Journal of Biomaterials Applications, 2016, 30, 1385-1391.	2.4	14
29	Electrostatic Flocking of Insulative and Biodegradable Polymer Microfibers for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100766.	7.6	14
30	Largeâ€scale synthesis of compressible and reâ€expandable threeâ€dimensional nanofiber matrices. Nano Select, 2021, 2, 1566-1579.	3.7	7
31	Intracellular microtubules as nano-scaffolding template self-assembles with conductive carbon nanotubes for biomedical device. Materials Science and Engineering C, 2020, 113, 110971.	7.3	6
32	Nanofiber Microspheres: Engineering Biomimetic Nanofiber Microspheres with Tailored Size, Predesigned Structure, and Desired Composition via Gas Bubble–Mediated Coaxial Electrospray (Small) Tj ETQ	q01 0.0 rg8	BT #Overlock 1
33	Expansion of Two-dimension Electrospun Nanofiber Mats into Three-dimension Scaffolds. Journal of Visualized Experiments, 2019, , .	0.3	3
34	Peptide-modified Chitosan Hydrogel accelerates skin wound healing by promoting fibroblast	2.5	0