
Fumio Matsuzaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1390370/publications.pdf Version: 2024-02-01

Εμμιο Μλτεμζακι

#	Article	IF	CITATIONS
1	Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nature Communications, 2022, 13, 470.	12.8	20
2	Notch1 and Notch2 collaboratively maintain radial glial cells in mouse neurogenesis. Neuroscience Research, 2021, 170, 122-132.	1.9	14
3	Protocol for De Novo Gene Targeting Via In Utero Electroporation. Methods in Molecular Biology, 2021, 2312, 309-320.	0.9	1
4	Endfoot regeneration restricts radial glial state and prevents translocation into the outer subventricular zone in early mammalian brain development. Nature Cell Biology, 2020, 22, 26-37.	10.3	33
5	Comparative Analysis of Brain Stiffness Among Amniotes Using Glyoxal Fixation and Atomic Force Microscopy. Frontiers in Cell and Developmental Biology, 2020, 8, 574619.	3.7	8
6	Mechanical forces drive ordered patterning of hair cells in the mammalian inner ear. Nature Communications, 2020, 11, 5137.	12.8	38
7	Amyloidogenic processing of amyloid β protein precursor (APP) is enhanced in the brains of alcadein α–deficient mice. Journal of Biological Chemistry, 2020, 295, 9650-9662.	3.4	11
8	Enhanced homologous recombination by the modulation of targeting vector ends. Scientific Reports, 2020, 10, 2518.	3.3	7
9	Dmrt genes participate in the development of Cajalâ€Retzius cells derived from the cortical hem in the telencephalon. Developmental Dynamics, 2020, 249, 698-710.	1.8	10
10	Dmrt factors determine the positional information of cerebral cortical progenitors via differential suppression of homeobox genes. Development (Cambridge), 2019, 146, .	2.5	14
11	Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development. Nature Communications, 2019, 10, 2780.	12.8	27
12	Isl1-expressing non-venous cell lineage contributes to cardiac lymphatic vessel development. Developmental Biology, 2019, 452, 134-143.	2.0	68
13	Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization. ELife, 2019, 8, .	6.0	25
14	Cortical progenitor biology: key features mediating proliferation versus differentiation. Journal of Neurochemistry, 2018, 146, 500-525.	3.9	77
15	Prdm16 is critical for progression of the multipolar phase during neural differentiation of the developing neocortex. Development (Cambridge), 2017, 144, 385-399.	2.5	46
16	Division modes and physical asymmetry in cerebral cortex progenitors. Current Opinion in Neurobiology, 2017, 42, 75-83.	4.2	44
17	Loss of the canonical spindle orientation function in the Pins/ <scp>LGN</scp> homolog <scp>AGS</scp> 3. EMBO Reports, 2017, 18, 1509-1520.	4.5	20
18	The Asymmetric Cell Division Regulators Par3, Scribble and Pins/Gpsm2 Are Not Essential for Erythroid Development or Enucleation. PLoS ONE, 2017, 12, e0170295.	2.5	4

FUMIO MATSUZAKI

#	Article	IF	CITATIONS
19	Visualization of Neuregulin 1 ectodomain shedding reveals its local processing in vitro and in vivo. Scientific Reports, 2016, 6, 28873.	3.3	12
20	Developing a <i>de novo</i> targeted knock-in method based on <i>in utero</i> electroporation into the mammalian brain. Development (Cambridge), 2016, 143, 3216-3222.	2.5	48
21	Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nature Communications, 2016, 7, 11349.	12.8	78
22	Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2. Neuron, 2016, 91, 1052-1068.	8.1	70
23	Cell cycle–arrested cells know the right time. Cell Cycle, 2016, 15, 2683-2684.	2.6	3
24	The GPSM2/LGN GoLoco motifs are essential for hearing. Mammalian Genome, 2016, 27, 29-46.	2.2	34
25	Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly. PLoS ONE, 2016, 11, e0158236.	2.5	11
26	Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse. PLoS ONE, 2015, 10, e0145334.	2.5	25
27	Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature, 2015, 522, 62-67.	27.8	387
28	STAP cells are derived from ES cells. Nature, 2015, 525, E4-E5.	27.8	8
29	In utero gene therapy rescues microcephaly caused by Pqbp1-hypofunction in neural stem progenitor cells. Molecular Psychiatry, 2015, 20, 459-471.	7.9	31
30	Cell Division Modes and Cleavage Planes of Neural Progenitors during Mammalian Cortical Development. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015719.	5.5	55
31	<i>Prox1</i> Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. Journal of Neuroscience, 2015, 35, 12869-12889.	3.6	104
32	Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear. Developmental Biology, 2014, 395, 62-72.	2.0	28
33	Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. ELife, 2014, 3, .	6.0	61
34	Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nature Communications, 2013, 4, 2125.	12.8	178
35	Perturbation Of Gpsm2/Lgn Enhances Haematopoietic Stem Cell Function. Blood, 2013, 122, 1176-1176.	1.4	1
36	Prox1 postmitotically defines dentate gyrus cells by specifying granule cell identity over CA3 pyramidal cell fate in the hippocampus. Development (Cambridge), 2012, 139, 3051-3062.	2.5	111

FUMIO MATSUZAKI

#	Article	IF	CITATIONS
37	Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus. Cerebral Cortex, 2012, 22, 469-481.	2.9	201
38	The Mammalian DM Domain Transcription Factor Dmrta2 Is Required for Early Embryonic Development of the Cerebral Cortex. PLoS ONE, 2012, 7, e46577.	2.5	59
39	Oblique Radial Clial Divisions in the Developing Mouse Neocortex Induce Self-Renewing Progenitors outside the Germinal Zone That Resemble Primate Outer Subventricular Zone Progenitors. Journal of Neuroscience, 2011, 31, 3683-3695.	3.6	414
40	Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO Journal, 2011, 30, 1690-1704.	7.8	138
41	IgSF molecule MDGA1 is involved in radial migration and positioning of a subset of cortical upperâ€layer neurons. Developmental Dynamics, 2011, 240, 96-107.	1.8	25
42	Lunatic fringe potentiates Notch signaling in the developing brain. Molecular and Cellular Neurosciences, 2010, 45, 12-25.	2.2	38
43	Protein phosphatase 2A negatively regulates aPKC signaling by modulating phosphorylation of Par-6 in <i>Drosophila</i> neuroblast asymmetric divisions. Journal of Cell Science, 2009, 122, 3242-3249.	2.0	48
44	Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biology, 2008, 10, 93-101.	10.3	449
45	Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development (Cambridge), 2008, 135, 3113-3124.	2.5	178
46	Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nature Cell Biology, 2006, 8, 586-593.	10.3	228
47	Differential functions of G protein and Baz–aPKC signaling pathways in Drosophila neuroblast asymmetric division. Journal of Cell Biology, 2004, 164, 729-738.	5.2	101
48	Heterotrimeric G Proteins Regulate Daughter Cell Size Asymmetry in Drosophila Neuroblast Divisions. Current Biology, 2003, 13, 947-954.	3.9	136
49	Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Current Opinion in Neurobiology, 2000, 10, 38-44.	4.2	59
50	Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature, 2000, 408, 593-596.	27.8	303
51	Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development (Cambridge), 1999, 126, 443-56.	2.5	64
52	miranda localizes staufen and prospero asymmetrically in mitotic neuroblasts and epithelial cells in early <i>Drosophila</i> embryogenesis. Development (Cambridge), 1998, 125, 4089-4098.	2.5	108
53	miranda localizes staufen and prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development (Cambridge), 1998, 125, 4089-98.	2.5	40
54	Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature, 1997, 390, 625-629.	27.8	296

#	Article	IF	CITATIONS
55	Asymmetric segregation of the homeodomain protein Prospero duringDrosophila development. Nature, 1995, 377, 627-630.	27.8	327