
Sven Diederichs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1389893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chimeric oligonucleotides combining guide RNA and single-stranded DNA repair template effectively induce precision gene editing. RNA Biology, 2022, 19, 588-593.	1.5	2
2	Enhanced AC133-specific CAR T cell therapy induces durable remissions in mice with metastatic small cell lung cancer. Cancer Letters, 2022, 538, 215697.	3.2	16
3	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13, .	5.8	16
4	RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Research, 2021, 49, D425-D436.	6.5	41
5	Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in nonâ€small cell lung cancer. Molecular Oncology, 2021, 15, 1797-1817.	2.1	9
6	Identification of a heat-inducible novel nuclear body containing the long noncoding RNA <i>MALAT1</i> . Journal of Cell Science, 2021, 134, .	1.2	17
7	Insights from the degradation mechanism of cyclin D into targeted therapy of the cancer cell cycle. Signal Transduction and Targeted Therapy, 2021, 6, 311.	7.1	3
8	circ2GO: A Database Linking Circular RNAs to Gene Function. Cancers, 2020, 12, 2975.	1.7	12
9	A pan-cancer analysis reveals nonstop extension mutations causing SMAD4 tumour suppressor degradation. Nature Cell Biology, 2020, 22, 999-1010.	4.6	12
10	Increased Level of Long Non-Coding RNA MALAT1 Is a Common Feature of Amoeboid Invasion. Cancers, 2020, 12, 1136.	1.7	4
11	MutaRNA: analysis and visualization of mutation-induced changes in RNA structure. Nucleic Acids Research, 2020, 48, W287-W291.	6.5	15
12	The IncRNA lincNMR regulates nucleotide metabolism via a YBX1 - RRM2 axis in cancer. Nature Communications, 2020, 11, 3214.	5.8	96
13	Identification, quantification and bioinformatic analysis of RNA-dependent proteins by RNase treatment and density gradient ultracentrifugation using R-DeeP. Nature Protocols, 2020, 15, 1338-1370.	5.5	16
14	The Circular RNA Landscape of Non-Small Cell Lung Cancer Cells. Cancers, 2020, 12, 1091.	1.7	24
15	The S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling YAP1/Hippo signaling pathway. ELife, 2020, 9, .	2.8	21
16	The Clinically Used Iron Chelator Deferasirox Is an Inhibitor of Epigenetic JumonjiC Domain-Containing Histone Demethylases. ACS Chemical Biology, 2019, 14, 1737-1750.	1.6	22
17	A pan-cancer analysis of synonymous mutations. Nature Communications, 2019, 10, 2569.	5.8	147
18	R-DeeP: Proteome-wide and Quantitative Identification of RNA-Dependent Proteins by Density Gradient Ultracentrifugation. Molecular Cell, 2019, 75, 184-199.e10.	4.5	77

#	Article	IF	CITATIONS
19	A high-throughput screen identifies the long non-coding RNA DRAIC as a regulator of autophagy. Oncogene, 2019, 38, 5127-5141.	2.6	37
20	LINC00261 and the Adjacent Gene FOXA2 Are Epithelial Markers and Are Suppressed during Lung Cancer Tumorigenesis and Progression. Non-coding RNA, 2019, 5, 2.	1.3	18
21	Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Research, 2018, 46, e4-e4.	6.5	40
22	Pulmonary metastasectomy for thyroid cancer as salvage therapy for radioactive iodine-refractory metastasesâ€. European Journal of Cardio-thoracic Surgery, 2018, 53, 625-630.	0.6	18
23	Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Research, 2018, 46, 4456-4468.	6.5	63
24	Mitochondrial mutations in human cancer: Curation of translation. RNA Biology, 2018, 15, 62-69.	1.5	17
25	RNA motifs and combinatorial prediction of interactions, stability and localization of noncoding RNAs. Nature Structural and Molecular Biology, 2018, 25, 1070-1076.	3.6	25
26	Targeting <i>LINC00673</i> expression triggers cellular senescence in lung cancer. RNA Biology, 2018, 15, 1499-1511.	1.5	27
27	The Long Noncoding RNA Cancer Susceptibility 9 and RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein L Form a Complex and Coregulate Genes Linked to AKT Signaling. Hepatology, 2018, 68, 1817-1832.	3.6	110
28	The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37, 4750-4768.	2.6	111
29	MIR100 host gene-encoded IncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Research, 2018, 46, 10405-10416.	6.5	61
30	A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Research, 2018, 46, 5504-5524.	6.5	30
31	Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Research, 2017, 45, gkw883.	6.5	138
32	Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. Journal of Hepatology, 2017, 67, 603-618.	1.8	292
33	The IncRNA VELUCT strongly regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Research, 2017, 45, 5458-5469.	6.5	84
34	The long non-coding RNA LINC00152 is essential for cell cycle progression through mitosis in HeLa cells. Scientific Reports, 2017, 7, 2265.	1.6	51
35	Tumor-derived exosomes modulate PD-L1 expression in monocytes. Science Immunology, 2017, 2, .	5.6	236
36	A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression. Nucleic Acids Research, 2017, 45, 12496-12508.	6.5	63

#	Article	IF	CITATIONS
37	Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system. PLoS ONE, 2017, 12, e0174077.	1.1	16
38	Mitotic Diversity in Homeostatic Human Interfollicular Epidermis. International Journal of Molecular Sciences, 2016, 17, 167.	1.8	13
39	The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, nonâ€coding <scp>RNA</scp> and synonymous mutations. EMBO Molecular Medicine, 2016, 8, 442-457.	3.3	209
40	<scp>LIMT</scp> is a novel metastasis inhibiting lnc <scp>RNA</scp> suppressed by <scp>EGF</scp> and downregulated in aggressive breast cancer. EMBO Molecular Medicine, 2016, 8, 1052-1064.	3.3	77
41	Alternative splicing affects the subcellular localization of Drosha. Nucleic Acids Research, 2016, 44, 5330-5343.	6.5	45
42	Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7535-E7544.	3.3	140
43	From junk to master regulators of invasion: IncRNA functions in migration, EMT and metastasis. International Journal of Cancer, 2016, 139, 269-280.	2.3	236
44	The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic Acids Research, 2016, 44, 1326-1341.	6.5	24
45	Micro-terminator: 'Hasta la vista, IncRNA!'. Nature Structural and Molecular Biology, 2015, 22, 279-281.	3.6	7
46	Long Noncoding RNAs in Lung Cancer. Current Topics in Microbiology and Immunology, 2015, 394, 57-110.	0.7	39
47	micro <scp>RNA</scp> â€379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO Journal, 2015, 34, 344-360.	3.5	43
48	Rap and chirp about X inactivation. Nature, 2015, 521, 170-171.	13.7	17
49	Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology, 2014, 59, 1900-1911.	3.6	155
50	Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology, 2014, 59, 911-923.	3.6	382
51	The four dimensions of noncoding RNA conservation. Trends in Genetics, 2014, 30, 121-123.	2.9	284
52	t RNA s: new tricks from old dogs. EMBO Journal, 2014, 33, 1981-1983.	3.5	7
53	Long Noncoding RNA: "LNCs―to Cancer. European Urology, 2014, 65, 1152-1153.	0.9	22
54	RNA-binding proteins regulate the expression of the immune activating ligand MICB. Nature Communications, 2014, 5, 4186.	5.8	25

#	Article	IF	CITATIONS
55	The <i>IGF2</i> intronic miR-483 selectively enhances transcription from <i>IGF2</i> fetal promoters and enhances tumorigenesis. Genes and Development, 2013, 27, 2543-2548.	2.7	135
56	Posttranscriptional destabilization of the liver-specific long noncoding RNA <i>HULC</i> by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology, 2013, 58, 1703-1712.	3.6	208
57	miR-137 Inhibits the Invasion of Melanoma Cells through Downregulation of Multiple Oncogenic Target Genes. Journal of Investigative Dermatology, 2013, 133, 768-775.	0.3	126
58	MALAT1 — a paradigm for long noncoding RNA function in cancer. Journal of Molecular Medicine, 2013, 91, 791-801.	1.7	624
59	Argonaute-3 activates the let-7a passenger strand microRNA. RNA Biology, 2013, 10, 1631-1643.	1.5	33
60	A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1–miRNA feedback loop. Nucleic Acids Research, 2013, 41, 3699-3712.	6.5	27
61	Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Research, 2013, 41, 5503-5512.	6.5	48
62	The Noncoding RNA <i>MALAT1</i> Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Research, 2013, 73, 1180-1189.	0.4	1,413
63	A Functional Yeast Survival Screen of Tumor-Derived cDNA Libraries Designed to Identify Anti-Apoptotic Mammalian Oncogenes. PLoS ONE, 2013, 8, e64873.	1.1	17
64	Tumor Suppressive MicroRNAs miR-34a/c Control Cancer Cell Expression of ULBP2, a Stress-Induced Ligand of the Natural Killer Cell Receptor NKG2D. Cancer Research, 2012, 72, 460-471.	0.4	172
65	Non-coding RNA and disease. RNA Biology, 2012, 9, 701-702.	1.5	10
66	Loss of the abundant nuclear non-coding RNA <i>MALAT1</i> is compatible with life and development. RNA Biology, 2012, 9, 1076-1087.	1.5	355
67	Rare Drosha Splice Variants Are Deficient in MicroRNA Processing but Do Not Affect General MicroRNA Expression in Cancer Cells. Neoplasia, 2012, 14, 238-IN26.	2.3	26
68	Genomeâ€wide methylation screen in lowâ€grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB Journal, 2012, 26, 4937-4950.	0.2	84
69	The hallmarks of cancer. RNA Biology, 2012, 9, 703-719.	1.5	1,627
70	Long Noncoding RNA Function and Expression in Cancer. , 2012, , 197-226.		2
71	MicroRNA Biogenesis and Cancer. Methods in Molecular Biology, 2011, 676, 3-22.	0.4	109
72	Invasion frontâ€specific expression and prognostic significance of microRNA in colorectal liver metastases. Cancer Science, 2011, 102, 1799-1807.	1.7	74

#	Article	IF	CITATIONS
73	Argonaute proteins regulate microRNA stability: ت»¿Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biology, 2011, 8, 1149-1157.	1.5	183
74	Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Research, 2011, 21, 1944-1954.	2.4	142
75	Inhibitor of Cyclin-dependent Kinase (CDK) Interacting with Cyclin A1 (INCA1) Regulates Proliferation and Is Repressed by Oncogenic Signaling. Journal of Biological Chemistry, 2011, 286, 28210-28222.	1.6	17
76	MicroRNA Northern Blotting, Precursor Cloning, and Ago2-Improved RNA Interference. Methods in Molecular Biology, 2011, 676, 85-100.	0.4	6
77	Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature, 2010, 466, 243-247.	13.7	150
78	Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor α in Breast Cancer Cells. Cancer Research, 2010, 70, 9175-9184.	0.4	260
79	microRNA Biogenesis and its Impact on RNA Interference. , 2010, , 325-354.		1
80	Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 2009, 11, 228-234.	4.6	2,328
81	Detection of Mutations in <i>EGFR</i> in Circulating Lung-Cancer Cells. New England Journal of Medicine, 2008, 359, 366-377.	13.9	1,602
82	Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9284-9289.	3.3	91
83	Adjuvant Therapy with Small Hairpin RNA Interference Prevents Non–Small Cell Lung Cancer Metastasis Development in Mice. Cancer Research, 2008, 68, 1896-1904.	0.4	32
84	A Rap GTPase interactor, RADIL, mediates migration of neural crest precursors. Genes and Development, 2007, 21, 2131-2136.	2.7	41
85	Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression. Cell, 2007, 131, 1097-1108.	13.5	573
86	DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. International Journal of Cancer, 2007, 121, 706-713.	2.3	13
87	Analysis of the genetic interactions between Cyclin A1, Atm and p53 during spermatogenesis. Asian Journal of Andrology, 2007, 9, 739-750.	0.8	9
88	The Cyclin Interactor p26INCA1 Regulates the Hematopoietic Stem Cell Pool Via CDK Inhibition Blood, 2007, 110, 637-637.	0.6	0
89	Sequence Variations of MicroRNAs in Human Cancer: Alterations in Predicted Secondary Structure Do Not Affect Processing. Cancer Research, 2006, 66, 6097-6104.	0.4	173
90	Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene, 2005, 24, 2739-2744.	2.6	82

#	Article	IF	CITATIONS
91	Expression patterns of mitotic and meiotic cell cycle regulators in testicular cancer and development. International Journal of Cancer, 2005, 116, 207-217.	2.3	21
92	Detection of Functionally Active Melanocortin Receptors and Evidence for an Immunoregulatory Activity of α-Melanocyte-Stimulating Hormone in Human Dermal Papilla Cells. Endocrinology, 2005, 146, 4635-4646.	1.4	59
93	Identification of Metastasis-Associated Receptor Tyrosine Kinases in Non–Small Cell Lung Cancer. Cancer Research, 2005, 65, 1778-1782.	0.4	124
94	S100 Family Members and Trypsinogens Are Predictors of Distant Metastasis and Survival in Early-Stage Non-Small Cell Lung Cancer. Cancer Research, 2004, 64, 5564-5569.	0.4	169
95	Translocation Products in Acute Myeloid Leukemia Activate the Wnt Signaling Pathway in Hematopoietic Cells. Molecular and Cellular Biology, 2004, 24, 2890-2904.	1.1	280
96	The Cyclin A1-CDK2 Complex Regulates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2004, 24, 8917-8928.	1.1	106
97	Identification of Interaction Partners and Substrates of the Cyclin A1-CDK2 Complex. Journal of Biological Chemistry, 2004, 279, 33727-33741.	1.6	59
98	Genome-wide screening for prognosis-predicting genes in early-stage non-small-cell lung cancer. Lung Cancer, 2004, 45, S145-S150.	0.9	35
99	Self-Assembly Is Important for TIP47 Function in Mannose 6-Phosphate Receptor Transport. Traffic, 2003, 4, 18-25.	1.3	24
100	MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22, 8031-8041.	2.6	1,986
101	Cyclin A1 is highly expressed in aggressive testicular germ cell tumors. Cancer Letters, 2003, 190, 89-95.	3.2	38
102	Successive increases in human cyclin A1 promoter activity during spermatogenesis in transgenic mice. International Journal of Molecular Medicine, 2003, 11, 311.	1.8	1
103	Successive increases in human cyclin A1 promoter activity during spermatogenesis in transgenic mice. International Journal of Molecular Medicine, 2003, 11, 311-5.	1.8	6
104	Cyclin A1 and gametogenesis in fertile and infertile patients: a potential new molecular diagnostic marker. Human Reproduction, 2002, 17, 2338-2343.	0.4	23
105	Analyses of the genomic methylation status of the human cyclin A1 promoter by a novel real-time PCR-based methodology. FEBS Letters, 2001, 490, 75-78.	1.3	18
106	Cyclin A1 directly interacts with B-myb and cyclin A1/cdk2 phosphorylate B-myb at functionally important serine and threonine residues: tissue-specific regulation of B-myb function. Blood, 2001, 97, 2091-2097.	0.6	55
107	Loss of expression of HDAC-recruiting methyl-CpG-binding domain proteins in human cancer. British Journal of Cancer, 2001, 85, 1168-1174.	2.9	12
108	Methylation of the Cyclin A1 Promoter Correlates with Gene Silencing in Somatic Cell Lines, while Tissue-Specific Expression of Cyclin A1 Is Methylation Independent. Molecular and Cellular Biology, 2000, 20, 3316-3329.	1.1	73

#	Article	IF	CITATIONS
109	c-myb Transactivates the Human Cyclin A1 Promoter and Induces Cyclin A1 Gene Expression. Blood, 1999, 94, 4255-4262.	0.6	47
110	c-myb Transactivates the Human Cyclin A1 Promoter and Induces Cyclin A1 Gene Expression. Blood, 1999, 94, 4255-4262.	0.6	5