
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1388666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydrate Polymers, 2010, 81, 41-48.	10.2	376
2	Effective Manipulation of the Electronic Effects and Its Influence on the Emission of 5-Substituted Tris(8-quinolinolate) Aluminum(III) Complexes. Chemistry - A European Journal, 2006, 12, 4523-4535.	3.3	162
3	Redâ^'Greenâ^'Blue Emission from Tris(5-aryl-8-quinolinolate)Al(III) Complexes. Journal of Organic Chemistry, 2004, 69, 1723-1725.	3.2	160
4	Emission Color Tuning in AlQ3 Complexes with Extended Conjugated Chromophores. Organic Letters, 2003, 5, 2769-2772.	4.6	153
5	Cytostatic 6-Arylpurine Nucleosides. 6.â€SAR in Anti-HCV and Cytostatic Activity of Extended Series of 6-Hetarylpurine Ribonucleosides. Journal of Medicinal Chemistry, 2005, 48, 5869-5873.	6.4	137
6	Rapid Access to Dibenzohelicenes and their Functionalized Derivatives. Angewandte Chemie - International Edition, 2013, 52, 9970-9975.	13.8	137
7	Aminophenyl―and Nitrophenyl‣abeled Nucleoside Triphosphates: Synthesis, Enzymatic Incorporation, and Electrochemical Detection. Angewandte Chemie - International Edition, 2008, 47, 2059-2062.	13.8	131
8	An Efficient Method for the Construction of Functionalized DNA Bearing Amino Acid Groups through Cross-Coupling Reactions of Nucleoside Triphosphates Followed by Primer Extension or PCR. Chemistry - A European Journal, 2007, 13, 6196-6203.	3.3	128
9	Direct Câ^H Arylation of Purines:  Development of Methodology and Its Use in Regioselective Synthesis of 2,6,8-Trisubstituted Purines. Organic Letters, 2006, 8, 5389-5392.	4.6	124
10	Ferrocenylethynyl Derivatives of Nucleoside Triphosphates: Synthesis, Incorporation, Electrochemistry, and Bioanalytical Applications. Chemistry - A European Journal, 2007, 13, 9527-9533.	3.3	117
11	Cross-coupling reactions of unprotected halopurine bases, nucleosides, nucleotides and nucleoside triphosphates with 4-boronophenylalanine in water. Synthesis of (purin-8-yl)- and (purin-6-yl)phenylalanines. Organic and Biomolecular Chemistry, 2006, 4, 2278-2284.	2.8	112
12	Direct Polymerase Synthesis of Reactive Aldehydeâ€Functionalized DNA and Its Conjugation and Staining with Hydrazines. Angewandte Chemie - International Edition, 2010, 49, 1064-1066.	13.8	106
13	Helquats: A Facile, Modular, Scalable Route to Novel Helical Dications. Chemistry - A European Journal, 2009, 15, 1072-1076.	3.3	103
14	Synthesis and Significant Cytostatic Activity of 7-Hetaryl-7-deazaadenosines. Journal of Medicinal Chemistry, 2011, 54, 5498-5507.	6.4	101
15	Baseâ€Modified DNA Labeled by [Ru(bpy) ₃] ²⁺ and [Os(bpy) ₃] ²⁺ Complexes: Construction by Polymerase Incorporation of Modified Nucleoside Triphosphates, Electrochemical and Luminescent Properties, and Applications. Chemistry - A European Journal. 2009. 15. 1144-1154.	3.3	96
16	Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Carbohydrate Polymers, 2016, 146, 187-196.	10.2	92
17	Vinylsulfonamide and Acrylamide Modification of DNA for Crossâ€linking with Proteins. Angewandte Chemie - International Edition, 2013, 52, 10515-10518.	13.8	83
18	Proline Zwitterion Dynamics in Solution, Glass, and Crystalline State. Journal of the American Chemical Society, 2006, 128, 13451-13462.	13.7	82

#	Article	IF	CITATIONS
19	Synthesis and Photophysical Properties of Biaryl-Substituted Nucleos(t)ides. Polymerase Synthesis of DNA Probes Bearing Solvatochromic and pH-Sensitive Dual Fluorescent and 19F NMR Labels. Journal of Organic Chemistry, 2012, 77, 1026-1044.	3.2	81
20	GFP-like Fluorophores as DNA Labels for Studying DNA–Protein Interactions. Journal of Organic Chemistry, 2012, 77, 8287-8293.	3.2	75
21	Synthesis of Aldehydeâ€Linked Nucleotides and DNA and Their Bioconjugations with Lysine and Peptides through Reductive Amination. Chemistry - A European Journal, 2012, 18, 4080-4087.	3.3	75
22	6-(Het)aryl-7-Deazapurine Ribonucleosides as Novel Potent Cytostatic Agents. Journal of Medicinal Chemistry, 2010, 53, 460-470.	6.4	73
23	Mekabu fucoidan: Structural complexity and defensive effects against avian influenza A viruses. Carbohydrate Polymers, 2014, 111, 633-644.	10.2	71
24	Labelling of nucleosides and oligonucleotides by solvatochromic 4-aminophthalimide fluorophore for studying DNA–protein interactions. Chemical Science, 2012, 3, 2797.	7.4	70
25	A General Approach to Optically Pure [5]â€; [6]â€; and [7]Heterohelicenes. Angewandte Chemie - International Edition, 2012, 51, 5857-5861.	13.8	70
26	Synthesis of 6,8,9-Tri- and 2,6,8,9-Tetrasubstituted Purines by a Combination of the Suzuki Cross-coupling, N-Arylation, and Direct Câ^H Arylation Reactions. Journal of Organic Chemistry, 2008, 73, 9048-9054.	3.2	69
27	Modular and Practical Synthesis of 6-Substituted Pyridin-3-yl C-Nucleosides. Journal of Organic Chemistry, 2007, 72, 6797-6805.	3.2	68
28	Intramolecular Direct Câ^'H Arylation Approach to Fused Purines. Synthesis of Purino[8,9- <i>f</i>]phenanthridines and 5,6-Dihydropurino[8,9- <i>a</i>]isoquinolines§Dedicated to the memory of Keith Fagnou Journal of Organic Chemistry, 2010, 75, 2302-2308.	3.2	63
29	Helquat Dyes: Helicene-like Push–Pull Systems with Large Second-Order Nonlinear Optical Responses. Journal of Organic Chemistry, 2016, 81, 1912-1920.	3.2	60
30	The first direct Câ \in "H arylation of purine nucleosides. Chemical Communications, 2007, , 4729.	4.1	59
31	Anthraquinone as a Redox Label for DNA: Synthesis, Enzymatic Incorporation, and Electrochemistry of Anthraquinoneâ€Modified Nucleosides, Nucleotides, and DNA. Chemistry - A European Journal, 2011, 17, 14063-14073.	3.3	59
32	Regioselective Direct C–H Arylations of Protected Uracils. Synthesis of 5- and 6-Aryluracil Bases. Journal of Organic Chemistry, 2011, 76, 5309-5319.	3.2	58
33	Direct C–H sulfenylation of purines and deazapurines. Organic and Biomolecular Chemistry, 2013, 11, 5189.	2.8	57
34	Azidophenyl as a click-transformable redox label of DNA suitable for electrochemical detection of DNA–protein interactions. Chemical Science, 2015, 6, 575-587.	7.4	57
35	2‣ubstituted dATP Derivatives as Building Blocks for Polymeraseâ€Catalyzed Synthesis of DNA Modified in the Minor Groove. Angewandte Chemie - International Edition, 2016, 55, 15856-15859.	13.8	56
36	Solvatochromic fluorene-linked nucleoside and DNA as color-changing fluorescent probes for sensing interactions. Chemical Science, 2016, 7, 5775-5785.	7.4	55

#	Article	IF	CITATIONS
37	Synthesis of C-Aryldeoxyribosides by [2 + 2 + 2]-Cyclotrimerization Catalyzed by Rh, Ni, Co, and Ru Complexes. Organic Letters, 2006, 8, 2051-2054.	4.6	54
38	Benzofurazane as a New Redox Label for Electrochemical Detection of DNA: Towards Multipotential Redox Coding of DNA Bases. Chemistry - A European Journal, 2013, 19, 12720-12731.	3.3	54
39	Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases. Angewandte Chemie - International Edition, 2011, 50, 8727-8730.	13.8	53
40	Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chemical Communications, 2015, 51, 4880-4882.	4.1	53
41	Cleavage of Functionalized DNA Containing 5â€Modified Pyrimidines by Type II Restriction Endonucleases. ChemBioChem, 2011, 12, 431-438.	2.6	52
42	Ester Prodrugs of Cyclic 1-(<i>S</i>)- [3-Hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: Synthesis and Antiviral Activity. Journal of Medicinal Chemistry, 2007, 50, 5765-5772.	6.4	50
43	Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens. Marine Biotechnology, 2015, 17, 718-735.	2.4	49
44	Synthesis of 2′-deoxyadenosine nucleosides bearing bipyridine-type ligands and their Ru-complexes in position 8 through cross-coupling reactions. Organic and Biomolecular Chemistry, 2007, 5, 2849.	2.8	48
45	Synthesis of Enantiomerically Pure (Purin-6-yl)phenylalanines and Their Nucleosides, a Novel Type of Purine-Amino Acid Conjugates. Journal of Organic Chemistry, 2005, 70, 8001-8008.	3.2	47
46	Direct C–H borylation and C–H arylation of pyrrolo[2,3-d]pyrimidines: synthesis of 6,8-disubstituted 7-deazapurines. Organic and Biomolecular Chemistry, 2009, 7, 866.	2.8	47
47	Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorganic and Medicinal Chemistry, 2012, 20, 6123-6133.	3.0	47
48	Switching the Regioselectivity of Direct C–H Arylation of 1,3â€Dimethyluracil. European Journal of Organic Chemistry, 2009, 2009, 3698-3701.	2.4	46
49	Oxidative Catalysis Using the Stoichiometric Oxidant as a Reagent: An Efficient Strategy for Singleâ€Electronâ€Transferâ€Induced Tandem Anion–Radical Reactions. Angewandte Chemie - International Edition, 2014, 53, 9944-9948.	13.8	46
50	Purines Bearing Phenanthroline or Bipyridine Ligands and Their Rull Complexes in Position 8 as Model Compounds for Electrochemical DNA Labeling – Synthesis, Crystal Structure, Electrochemistry, Quantum Chemical Calculations, Cytostatic and Antiviral Activity. European Journal of Inorganic Chemistry, 2007, 2007, 1752-1769.	2.0	45
51	Functional helquats: helical cationic dyes with marked, switchable chiroptical properties in the visible region. Chemical Communications, 2015, 51, 1583-1586.	4.1	45
52	Materials chemistry approach to anion-sensor design. Tetrahedron, 2004, 60, 11163-11168.	1.9	44
53	Cross oupling Reaction of Saccharideâ€Based Alkenyl Boronic Acids with Aryl Halides: The Synthesis of Bergenin. Chemistry - A European Journal, 2014, 20, 4414-4419.	3.3	44
54	Strategies toward improving the performance of fluorescence-based sensors for inorganic anions. Chemical Communications, 2004, , 1282-1283.	4.1	43

#	Article	IF	CITATIONS
55	Synthesis of diastereomeric 3-hydroxy-4-pyrrolidinyl derivatives of nucleobases. Tetrahedron, 2007, 63, 1243-1253.	1.9	43
56	Synthesis of 8-bromo-, 8-methyl- and 8-phenyl-dATP and their polymerase incorporation into DNA. Organic and Biomolecular Chemistry, 2008, 6, 3657.	2.8	43
57	Facile and Efficient Synthesis of 6-(Hydroxymethyl)purines. Organic Letters, 2004, 6, 3225-3228.	4.6	42
58	Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Organic and Biomolecular Chemistry, 2010, 8, 1194.	2.8	42
59	[2+2+2] Cycloisomerisation of Aromatic Cyanodiynes in the Synthesis of Pyridohelicenes and Their Analogues. Chemistry - A European Journal, 2016, 22, 14401-14405.	3.3	41
60	New Modular and Efficient Approach to 6-Substituted Pyridin-2-yl C-Nucleosides. Journal of Organic Chemistry, 2006, 71, 7322-7328.	3.2	40
61	Synthesis and photophysical properties of 7-deaza-2′-deoxyadenosines bearing bipyridine ligands and their Ru(ii)-complexes in position 7. Organic and Biomolecular Chemistry, 2008, 6, 2852.	2.8	40
62	Alkylsulfanylphenyl Derivatives of Cytosine and 7â€Deazaadenine Nucleosides, Nucleotides and Nucleoside Triphosphates: Synthesis, Polymerase Incorporation to DNA and Electrochemical Study. Chemistry - A European Journal, 2011, 17, 5833-5841.	3.3	40
63	[6]Saddlequat: a [6]helquat captured on its racemization pathway. Chemical Science, 2011, 2, 2314-2320.	7.4	37
64	Bodipy-Labeled Nucleoside Triphosphates for Polymerase Synthesis of Fluorescent DNA. Bioconjugate Chemistry, 2014, 25, 1984-1995.	3.6	37
65	Synthesis of Bridged Diketopiperazines by Using the Persistent Radical Effect and a Formal Synthesis of Bicyclomycin. Angewandte Chemie - International Edition, 2015, 54, 12153-12157.	13.8	37
66	Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. Journal of the American Chemical Society, 2021, 143, 7124-7134.	13.7	37
67	Regioselectivity in Cross-Coupling Reactions of 2,6,8-Trichloro-9-(tetrahydropyran-2-yl)purine: Synthesis of 2,6,8-Trisubstituted Purine Bases. Synthesis, 2004, 2004, 2869-2876.	2.3	36
68	The discovery of pyridinium 1,2,4-triazines with enhanced performance in bioconjugation reactions. Chemical Science, 2017, 8, 3593-3598.	7.4	35
69	Asymmetric Synthesis of Nonracemic 2-Amino[6]helicenes and Their Self-Assembly into Langmuir Films. Journal of Organic Chemistry, 2018, 83, 5523-5538.	3.2	35
70	Synthesis of Acetylene Linked Double-Nucleobase Nucleos(t)ide Building Blocks and Polymerase Construction of DNA Containing Cytosines in the Major Groove. Journal of Organic Chemistry, 2011, 76, 3457-3462.	3.2	34
71	Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. Bioconjugate Chemistry, 2016, 27, 2089-2094.	3.6	34
72	Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Organic and Biomolecular Chemistry, 2018, 16, 5800-5807.	2.8	34

#	Article	IF	CITATIONS
73	A New Modular and Practical Methodology for the Synthesis of 4- or 3-Substituted Phenyl C-Nucleosides. European Journal of Organic Chemistry, 2005, 2005, 4525-4528.	2.4	33
74	Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. Journal of Medicinal Chemistry, 2017, 60, 2411-2424.	6.4	33
75	Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA. Chemistry - A European Journal, 2020, 26, 1286-1291.	3.3	33
76	The first synthesis and cytostatic activity of novel 6-(fluoromethyl)purine bases and nucleosides. Organic and Biomolecular Chemistry, 2005, 3, 3001.	2.8	32
77	Synthesis of racemic and enantiomeric 3-pyrrolidinyl derivatives of nucleobases. Tetrahedron, 2006, 62, 5763-5774.	1.9	32
78	Aqueous Heck Cross-Coupling Preparation of Acrylate-Modified Nucleotides and Nucleoside Triphosphates for Polymerase Synthesis of Acrylate-Labeled DNA. Journal of Organic Chemistry, 2013, 78, 9627-9637.	3.2	32
79	Direct One-Pot Synthesis of Nucleosides from Unprotected or 5- <i>O</i> -Monoprotected <scp>d</scp> -Ribose. Organic Letters, 2015, 17, 4604-4607.	4.6	32
80	Helicenes as Chiralityâ€Inducing Groups in Transitionâ€Metal Catalysis: The First Helically Chiral Olefin Metathesis Catalyst. Chemistry - A European Journal, 2018, 24, 10994-10998.	3.3	32
81	Microwave-Assisted Alkylation of [CB ₁₁ H ₁₂] ^{â^'} and Related Anions. Inorganic Chemistry, 2010, 49, 10247-10254.	4.0	31
82	Sugar-modified derivatives of cytostatic 7-(het)aryl-7-deazaadenosines: 2′-C-methylribonucleosides, 2′-deoxy-2′-fluoroarabinonucleosides, arabinonucleosides and 2′-deoxyribonucleosides. Bioorganic and Medicinal Chemistry, 2012, 20, 5202-5214.	3.0	31
83	Synthesis of Ester Prodrugs of 9-(<i>S</i>)-[3-Hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPDAP) as Anti-Poxvirus Agents. Journal of Medicinal Chemistry, 2010, 53, 6825-6837.	6.4	30
84	Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5â€ <i>O</i> â€Monoprotected or 5â€Modified Ribose: Improved Protocol, Scope, and Mechanism. Chemistry - A European Journal, 2017, 23, 3910-3917.	3.3	30
85	Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Molecular Metabolism, 2022, 61, 101499.	6.5	30
86	<i>Cyclo</i> Salâ€phosphate Pronucleotides of Cytostatic 6â€(Het)arylâ€7â€deazapurine Ribonucleosides: Synthesis, Cytostatic Activity, and Inhibition of Adenosine Kinases. ChemMedChem, 2010, 5, 1386-1396.	3.2	29
87	Direct Amination of Nitro(pentafluorosulfanyl)benzenes through Vicarious Nucleophilic Substitution of Hydrogen. European Journal of Organic Chemistry, 2012, 2012, 02123-2126.	2.4	29
88	Lipophosphonoxins II: Design, Synthesis, and Properties of Novel Broad Spectrum Antibacterial Agents. Journal of Medicinal Chemistry, 2017, 60, 6098-6118.	6.4	29
89	Proton transfer in guanine–cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations. Faraday Discussions, 2018, 212, 331-344.	3.2	28
90	Synthesis of 2-Substituted 6-(Hydroxymethyl)purine Bases and Nucleosides. Collection of Czechoslovak Chemical Communications, 2005, 70, 1669-1695.	1.0	27

#	Article	IF	CITATIONS
91	4′-Alkoxy oligodeoxynucleotides: a novel class of RNA mimics. Organic and Biomolecular Chemistry, 2011, 9, 8261.	2.8	27
92	Brightly Fluorescent 2′-Deoxyribonucleoside Triphosphates Bearing Methylated Bodipy Fluorophore for <i>in Cellulo</i> Incorporation to DNA, Imaging, and Flow Cytometry. Bioconjugate Chemistry, 2018, 29, 3906-3912.	3.6	27
93	Squaramateâ€Modified Nucleotides and DNA for Specific Cross‣inking with Lysineâ€Containing Peptides and Proteins. Angewandte Chemie - International Edition, 2019, 58, 13345-13348.	13.8	27
94	Synthesis and biological activity of benzo-fused 7-deazaadenosine analogues. 5- and 6-substituted 4-amino- or 4-alkylpyrimido[4,5-b]indole ribonucleosides. Bioorganic and Medicinal Chemistry, 2013, 21, 5362-5372.	3.0	26
95	Structural Basis for Inhibition of Mycobacterial and Human Adenosine Kinase by 7-Substituted 7-(Het)aryl-7-deazaadenine Ribonucleosides. Journal of Medicinal Chemistry, 2014, 57, 8268-8279.	6.4	26
96	Flexible Alkyne-Linked Thymidine Phosphoramidites and Triphosphates for Chemical or Polymerase Synthesis and Fast Postsynthetic DNA Functionalization through Copper-Catalyzed Alkyne–Azide 1,3-Dipolar Cycloaddition. Organic Letters, 2018, 20, 3962-3965.	4.6	26
97	RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis. Molecular Cell, 2021, 81, 3160-3170.e9.	9.7	26
98	A Facile and Efficient Synthesis of (Purin-6-yl)alanines. Journal of Organic Chemistry, 2004, 69, 7985-7988.	3.2	25
99	Tetrathiafulvaleneâ€Labelled Nucleosides and Nucleoside Triphosphates: Synthesis, Electrochemistry and the Scope of Their Polymerase Incorporation into DNA. European Journal of Organic Chemistry, 2009, 2019, 3519-3525.	2.4	25
100	Lithium Salts of [1,12-Dialkyl-CB ₁₁ Me ₁₀] ^{â^'} Anions. Inorganic Chemistry, 2010, 49, 10255-10263.	4.0	25
101	Phosphoramidate pronucleotides of cytostatic 6-aryl-7-deazapurine ribonucleosides. Bioorganic and Medicinal Chemistry, 2011, 19, 229-242.	3.0	25
102	Highly Methylated Purines and Purinium Salts as Analogues of Heteromines. European Journal of Organic Chemistry, 2005, 2005, 3026-3030.	2.4	24
103	Preparation of Highly Substituted 6-Arylpurine Ribonucleosides by Ni-Catalyzed Cyclotrimerization. Scope of the Reaction. Journal of Organic Chemistry, 2006, 71, 8978-8981.	3.2	24
104	Pd-catalyzed Suzuki–Miyaura coupling reactions in the synthesis of 5-aryl-1-[2-(phosphonomethoxy)ethyl]uracils as potential multisubstrate inhibitors of thymidine phosphorylase. Tetrahedron Letters, 2007, 48, 3065-3067.	1.4	24
105	The 16 CB ₁₁ (CH ₃) _{<i>n</i>} (CD ₃) _{12–<i>n</i>} <â Radicals with 5-Fold Substitution Symmetry: Spin Density Distribution in CB ₁₁ Me ₁₂ _{•. Inorganic Chemistry. 2012. 51. 10819-10824.}	€¢ 4.0	24
106	Synthesis of Hydrazoneâ€Modified Nucleotides and Their Polymerase Incorporation onto DNA for Redox Labeling. ChemPlusChem, 2012, 77, 652-662.	2.8	24
107	Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. Journal of Medicinal Chemistry, 2018, 61, 9347-9359.	6.4	24
108	Thiophene-linked tetramethylbodipy-labeled nucleotide for viscosity-sensitive oligonucleotide probes of hybridization and protein–DNA interactions. Organic and Biomolecular Chemistry, 2020, 18, 912-919.	2.8	24

#	Article	IF	CITATIONS
109	Bio- and air-tolerant carbon–carbon bond formations via organometallic ruthenium catalysis. Collection of Czechoslovak Chemical Communications, 2009, 74, 1023-1034.	1.0	23
110	Preparation of Covalent Long-Chain Trialkylstannyl and Trialkylsilyl Salts and an Examination of their Adsorption on Gold. Langmuir, 2010, 26, 8483-8490.	3.5	23
111	Diethyl Fluoronitromethylphosphonate: Synthesis and Application in Nucleophilic Fluoroalkyl Additions. Chemistry - A European Journal, 2014, 20, 1453-1458.	3.3	23
112	Photochemical Câ^'H Amination of Ethers and Geminal Difunctionalization Reactions in One Pot. Angewandte Chemie - International Edition, 2019, 58, 12440-12445.	13.8	23
113	N,3,4-Trisubstituted pyrrolidines by electron transfer-induced oxidative cyclizations of N-allylic β-amino ester enolates. Tetrahedron, 2009, 65, 10917-10929.	1.9	22
114	Asymmetric Domino Aza-Michael Addition/[3 + 2] Cycloaddition Reactions as a Versatile Approach to α,β,Ĵ³-Triamino Acid Derivatives. Organic Letters, 2014, 16, 1088-1091.	4.6	22
115	Design of <i>Plasmodium vivax</i> Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential Antimalarial Therapeutics. ACS Chemical Biology, 2018, 13, 82-90.	3.4	22
116	Antiviral Activity of 7-Substituted 7-Deazapurine Ribonucleosides, Monophosphate Prodrugs, and Triphoshates against Emerging RNA Viruses. ACS Infectious Diseases, 2021, 7, 471-478.	3.8	22
117	Syntheses of Base and Side-Chain Modified Pyrimidine 1-[2-(Phosphonomethoxy)propyl] Derivatives as Potent Inhibitors of Thymidine Phosphorylase (PD-ECGF) from SD-Lymphoma. Collection of Czechoslovak Chemical Communications, 2006, 71, 595-624.	1.0	21
118	Cobaltâ€Induced Synthesis of 6â€(Pyridinâ€2â€yl)purines by Microwaveâ€Enhanced [2+2+2] Cyclotrimerization. European Journal of Organic Chemistry, 2008, 2008, 3335-3343.	2.4	21
119	Synthesis, cytostatic and anti-HCV activity of 6-(N-substituted aminomethyl)-, 6-(O-substituted) Tj ETQq1 1 0.784 Chemistry, 2008, 16, 2329-2366.	314 rgBT 3.0	/Overlock 1 21
120	Modular Synthesis of 5-Substituted Thiophen-2-yl <i>C</i> -2′-Deoxyribonucleosides. Journal of Organic Chemistry, 2008, 73, 3798-3806.	3.2	21
121	Synthesis of benzamide-C-ribonucleosides by Pd-catalyzed aminocarbonylations. Tetrahedron, 2009, 65, 4471-4483.	1.9	21
122	Use of Pd-catalyzed Suzuki–Miyaura coupling reaction in the rapid synthesis of 5-aryl-6-(phosphonomethoxy)uracils and evaluation of their inhibitory effect towards human thymidine phosphorylase. Tetrahedron, 2009, 65, 8486-8492.	1.9	21
123	A Chiral Dicationic [8]Circulenoid: Photochemical Origin and Facile Thermal Conversion into a Helicene Congener. Angewandte Chemie - International Edition, 2012, 51, 11972-11976.	13.8	21
124	Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor. Scientific Reports, 2017, 7, 41839.	3.3	21
125	First total synthesis of <i>ent</i> -asperparaline C and assignment of the absolute configuration of asperparaline C. Chemical Communications, 2019, 55, 3931-3934.	4.1	21
126	Phosphonoxins: Rational design and discovery of a potent nucleotide anti-Giardia agent. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2811-2816.	2.2	20

#	Article	IF	CITATIONS
127	A Modular Methodology for the Synthesis of 4―and 3â€Substituted Benzene and Aniline Câ€Ribonucleosides. European Journal of Organic Chemistry, 2008, 2008, 1689-1704.	2.4	20
128	An Efficient and Highly Selective Synthesis of (Z)-Fluoroenol Phosphates from Hydroxy Difluorophosphonates. Synthesis, 2009, 2009, 957-962.	2.3	20
129	Synthesis of oligoribonucleotides with phosphonate-modified linkages. Organic and Biomolecular Chemistry, 2011, 9, 6120.	2.8	20
130	Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‣inking. Chemistry - A European Journal, 2015, 21, 16091-16102.	3.3	20
131	Pyrrolidine N-alkylphosphonates and related nucleotide analogues: synthesis and stereochemistry. Tetrahedron, 2009, 65, 3673-3681.	1.9	19
132	Lipophosphonoxins: New Modular Molecular Structures with Significant Antibacterial Properties. Journal of Medicinal Chemistry, 2011, 54, 7884-7898.	6.4	19
133	2â€5ubstituted dATP Derivatives as Building Blocks for Polymerase atalyzed Synthesis of DNA Modified in the Minor Groove. Angewandte Chemie, 2016, 128, 16088-16091.	2.0	19
134	Ferrocenyl helquats: unusual chiral organometallic nonlinear optical chromophores. Dalton Transactions, 2017, 46, 1052-1064.	3.3	19
135	2â€Allyl―and Propargylaminoâ€dATPs for Siteâ€Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA. Chemistry - A European Journal, 2018, 24, 14938-14941.	3.3	19
136	Enzymatic synthesis of hypermodified DNA polymers for sequence-specific display of four different hydrophobic groups. Nucleic Acids Research, 2020, 48, 11982-11993.	14.5	19
137	Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae). Carbohydrate Polymers, 2020, 246, 116588.	10.2	19
138	1,3â€Diketoneâ€Modified Nucleotides and DNA for Crossâ€Linking with Arginineâ€Containing Peptides and Proteins. Angewandte Chemie - International Edition, 2021, 60, 17383-17387.	13.8	19
139	Synthesis of Purines Bearing Functionalized C-Substituents by the Conjugate Addition of Nucleophiles to 6-Vinylpurines and 6-Ethynylpurines. European Journal of Organic Chemistry, 2006, 2006, 5083-5098.	2.4	18
140	<i>N</i> -Phosphonocarbonylpyrrolidine Derivatives of Guanine: A New Class of Bi-Substrate Inhibitors of Human Purine Nucleoside Phosphorylase. Journal of Medicinal Chemistry, 2012, 55, 1612-1621.	6.4	18
141	Crystal structure of <i>Mycobacterium tuberculosis O</i> 6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA. Biochemical Journal, 2016, 473, 123-133.	3.7	18
142	Nucleotideâ€Bearing Benzylideneâ€Tetrahydroxanthylium Nearâ€IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chemistry - A European Journal, 2020, 26, 11950-11954.	3.3	18
143	Simple Transformation of Thymine 1-[3-Hydroxy-2-(phosphonomethoxy)propyl] Derivatives to Their 1-[3-Fluoro-2-(phosphonomethoxy)propyl] Counterparts. Collection of Czechoslovak Chemical Communications, 2005, 70, 1465-1481.	1.0	17
144	Syntheses of Pyrimidine Acyclic Nucleoside Phosphonates as Potent Inhibitors of Thymidine Phosphorylase (PD-ECGF) from SD-Lymphoma. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1025-1028.	1.1	17

#	Article	IF	CITATIONS
145	Air-tolerant C–C bond formation via organometallic ruthenium catalysis: diverse catalytic pathways involving (C5Me5)Ru or (C5H5)Ru are robust to molecular oxygen. Tetrahedron Letters, 2009, 50, 4526-4528.	1.4	17
146	Structural diversity of nucleoside phosphonic acids as a key factor in the discovery of potent inhibitors of rat T-cell lymphoma thymidine phosphorylase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 862-865.	2.2	17
147	Modular Stereoselective Synthesis of (1→2)â€ <i>C</i> â€Glycosides based on the sp ² –sp ³ Suzuki–Miyaura Reaction. Chemistry - A European Journal, 2015, 21, 7043-7047.	3.3	17
148	Synthesis, cytostatic, and antiviral activity of novel 6-[2-(dialkylamino)ethyl]-, 6-(2-alkoxyethyl)-, 6-[2-(alkylsulfanyl)ethyl]-, and 6-[2-(dialkylamino)vinyl]purine nucleosides. Bioorganic and Medicinal Chemistry, 2008, 16, 1400-1424.	3.0	16
149	Synthesis of nucleoside mono- and triphosphates bearing oligopyridine ligands, their incorporation into DNA and complexation with transition metals. Organic and Biomolecular Chemistry, 2012, 10, 49-55.	2.8	16
150	Additions of Thiols to 7-Vinyl-7-deazaadenine Nucleosides and Nucleotides. Synthesis of Hydrophobic Derivatives of 2′-Deoxyadenosine, dATP and DNA. Journal of Organic Chemistry, 2016, 81, 11115-11125.	3.2	16
151	Tandem Anionic oxyâ€Cope Rearrangement/Oxygenation Reactions as a Versatile Method for Approaching Diverse Scaffolds. Angewandte Chemie - International Edition, 2020, 59, 6160-6165.	13.8	16
152	A convenient, high-yield synthesis of 1-substituted uracil and thymine derivatives. Tetrahedron, 2009, 65, 8513-8523.	1.9	15
153	Highly Functionalized and Potent Antiviral Cyclopentane Derivatives Formed by a Tandem Process Consisting of Organometallic, Transitionâ€Metalâ€Catalyzed, and Radical Reaction Steps. Chemistry - A European Journal, 2014, 20, 10298-10304.	3.3	15
154	Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins. PLoS ONE, 2015, 10, e0145918.	2.5	15
155	Bifunctional Acyclic Nucleoside Phosphonates. 1. Symmetrical 1,3-Bis[(phosphonomethoxy)propan-2-yl] Derivatives of Purines and Pyrimidines. Collection of Czechoslovak Chemical Communications, 2006, 71, 543-566.	1.0	14
156	Synthesis of substituted 6-cyclopropylpurine bases and nucleosides by cross-coupling reactions or cyclopropanations. Organic and Biomolecular Chemistry, 2008, 6, 2377.	2.8	14
157	Synthesis of (purin-6-yl)methylphosphonate bases and nucleosides. Tetrahedron Letters, 2010, 51, 2464-2466.	1.4	14
158	Synthesis and biological evaluation of acyclic nucleotide analogues with a furo[2,3- <i>d</i>]pyrimidin-2(3 <i>H</i>)-one base. Canadian Journal of Chemistry, 2010, 88, 628-638.	1.1	14
159	Sugar-modified derivatives of cytostatic 6-(het)aryl-7-deazapurine nucleosides: 2′-C-methylribonucleosides, arabinonucleosides and 2′-deoxy-2′-fluoroarabinonucleosides. Collection of Czechoslovak Chemical Communications, 2011, 76, 957-988.	1.0	14
160	The observed and calculated ¹ H and ¹³ C chemical shifts of tertiary amines and their <i>N</i> â€oxides. Magnetic Resonance in Chemistry, 2011, 49, 320-327.	1.9	14
161	NMR Studies of Purines. Annual Reports on NMR Spectroscopy, 2014, 82, 59-113.	1.5	14
162	Polymerase Synthesis of DNAs Bearing Vinyl Groups in the Major Groove and their Cleavage by Restriction Endonucleases. ChemBioChem, 2014, 15, 2306-2312.	2.6	14

#	Article	IF	CITATIONS
163	The Use of Cobaltâ€Mediated Cycloisomerisation of Ynedinitriles in the Synthesis of Pyridazinohelicenes. Chemistry - A European Journal, 2014, 20, 8477-8482.	3.3	14
164	Trifluoroacetophenone-Linked Nucleotides and DNA for Studying of DNA–Protein Interactions by ¹⁹ F NMR Spectroscopy. Journal of Organic Chemistry, 2017, 82, 11431-11439.	3.2	14
165	MOP and EE Protecting Groups in Synthesis of α- or β-Naphthyl- <i>C</i> -Glycosides from Glycals. ACS Omega, 2018, 3, 7875-7887.	3.5	14
166	Tricyclic etheno analogs of PMEG and PMEDAP: Synthesis and biological activity. Bioorganic and Medicinal Chemistry, 2006, 14, 8057-8065.	3.0	13
167	Alkyloxycarbonyl group migration in furanosides. Tetrahedron, 2012, 68, 6701-6711.	1.9	13
168	Conjugate Addition of Diethyl 1-Fluoro-1-phenylsulfonylmethanephosphonate to α,β-Unsaturated Compounds. Journal of Organic Chemistry, 2013, 78, 4573-4579.	3.2	13
169	Copper-mediated arylsulfanylations and arylselanylations of pyrimidine or 7-deazapurine nucleosides and nucleotides. Organic and Biomolecular Chemistry, 2016, 14, 10018-10022.	2.8	13
170	Flexible double-headed cytosine-linked 2′-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases. Bioorganic and Medicinal Chemistry, 2016, 24, 1268-1276.	3.0	13
171	Sequential Oxidative and Reductive Radical Cyclization Approach toward Asperparaline C and Synthesis of Its 8-Oxo Analogue. Organic Letters, 2017, 19, 1152-1155.	4.6	13
172	Sugar modified pyrimido[4,5- <i>b</i>]indole nucleosides: synthesis and antiviral activity. MedChemComm, 2017, 8, 1856-1862.	3.4	13
173	Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA. Organic and Biomolecular Chemistry, 2017, 15, 6984-6996.	2.8	13
174	Squaramateâ€Modified Nucleotides and DNA for Specific Cross‣inking with Lysineâ€Containing Peptides and Proteins. Angewandte Chemie, 2019, 131, 13479-13482.	2.0	13
175	Additive Effects of Omega-3 Fatty Acids and Thiazolidinediones in Mice Fed a High-Fat Diet: Triacylglycerol/Fatty Acid Cycling in Adipose Tissue. Nutrients, 2020, 12, 3737.	4.1	13
176	Synthesis of 6-Amino-, 6-Methyl- and 6-Aryl-2-(hydroxymethyl)purine Bases and Nucleosides. Collection of Czechoslovak Chemical Communications, 2006, 71, 788-803.	1.0	12
177	Cytostatic and Antiviral 6-Arylpurine Ribonucleosides VIII. Synthesis and Evaluation of 6-Substituted Purine 3'-Deoxyribonucleosides. Collection of Czechoslovak Chemical Communications, 2006, 71, 1484-1496.	1.0	12
178	Observed and calculated ¹ H and ¹³ C chemical shifts induced by the <i>in situ</i> oxidation of model sulfides to sulfoxides and sulfones. Magnetic Resonance in Chemistry, 2010, 48, 718-726.	1.9	12
179	Synthesis, conformational studies, and biological properties of phosphonomethoxyethyl derivatives of nucleobases with a locked conformation via a pyrrolidine ring. Organic and Biomolecular Chemistry, 2015, 13, 4693-4705.	2.8	12
180	Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation. European Journal of Medicinal Chemistry, 2019, 183, 111667.	5.5	12

#	Article	IF	CITATIONS
181	Synthesis and Cytotoxic and Antiviral Activity Profiling of Allâ€Four Isomeric Series of Pyridoâ€Fused 7â€Deazapurine Ribonucleosides. Chemistry - A European Journal, 2020, 26, 13002-13015.	3.3	12
182	1,2,4-Thiadiazole acyclic nucleoside phosphonates as inhibitors of cysteine dependent enzymes cathepsin K and GSK-3β. Bioorganic and Medicinal Chemistry, 2021, 32, 115998.	3.0	12
183	Polyfunctional βâ€Dicarbonyl Compounds by Michael Addition Reactions of Ester Enolates to αâ€Benzylidene and αâ€Alkylideneâ€Î²â€dicarbonyl Compounds. European Journal of Organic Chemistry, 2012, 3459-3475.	20.112,	11
184	N4-Acyl derivatives as lipophilic prodrugs of cidofovir and its 5-azacytosine analogue, (S)-HPMP-5-azaC: Chemistry and antiviral activity. Bioorganic and Medicinal Chemistry, 2014, 22, 2896-2906.	3.0	11
185	Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions. Chemistry - A European Journal, 2015, 21, 9877-9888.	3.3	11
186	<i>N</i> ,2,3,4â€Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions. European Journal of Organic Chemistry, 2016, 2016, 3862-3871.	2.4	11
187	Tunable Chiral Second-Order Nonlinear Optical Chromophores Based on Helquat Dications. Journal of Physical Chemistry A, 2017, 121, 5842-5855.	2.5	11
188	Isomeric Naphthoâ€Fused 7â€Deazapurine Nucleosides and Nucleotides: Synthesis, Biological Activity, Photophysical Properties and Enzymatic Incorporation to Nucleic Acids. European Journal of Organic Chemistry, 2018, 2018, 5092-5108.	2.4	11
189	Acyclic nucleoside phosphonates with unnatural nucleobases, favipiravir and allopurinol, designed as potential inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases. Tetrahedron, 2018, 74, 5886-5897.	1.9	11
190	A General Regioselective Synthesis of 2,4-Diarylpyrimidines from 2- Thiouracil through Two Orthogonal Cross-Coupling Reactions. Synlett, 2012, 23, 1305-1308.	1.8	10
191	¹³ C GIAO DFT calculation as a tool for configuration prediction of N–O group in saturated heterocyclic <i>N</i> â€oxides. Magnetic Resonance in Chemistry, 2012, 50, 415-423.	1.9	10
192	Tetrathiafulvalene–Oligo(<i>para</i> â€phenyleneethynylene) Conjugates: Formation of Multiple Mixedâ€Valence Complexes upon Electrochemical Oxidation. Chemistry - A European Journal, 2013, 19, 6108-6121.	3.3	10
193	Electrospray Ionization Mass Spectrometry Reveals an Unexpected Coupling Product in the Copper-Promoted Synthesis of Pyrazoles. Organometallics, 2013, 32, 807-816.	2.3	10
194	Facile and Highly Diastereoselective Synthesis of <i>syn</i> ―and <i>cis</i> â€1,2â€Diol Derivatives from Protected αâ€Hydroxy Ketones. European Journal of Organic Chemistry, 2015, 2015, 7785-7798.	2.4	10
195	Pyrrolidine nucleoside bisphosphonates as antituberculosis agents targeting hypoxanthine-guanine phosphoribosyltransferase. European Journal of Medicinal Chemistry, 2018, 159, 10-22.	5.5	10
196	Synthesis of 2′-deoxycytidine and its triphosphate bearing tryptophan-based imidazolinone fluorophore for environment sensitive fluorescent labelling of DNA. Tetrahedron, 2018, 74, 6621-6629.	1.9	10
197	Stepwise triple-click functionalization of synthetic peptides. Organic and Biomolecular Chemistry, 2018, 16, 5960-5964.	2.8	10
198	Enantioselective resolution of side-chain modified gem-difluorinated alcohols catalysed by Candida antarctica lipase B and monitored by capillary electrophoresis. Bioorganic and Medicinal Chemistry, 2019, 27, 1246-1253.	3.0	10

RADEK POHL

#	Article	IF	CITATIONS
199	Synthesis of diverse 6-(1,2-disubstituted ethyl)purine bases and nucleosides via 6-(oxiran-2-yl)purines. Tetrahedron, 2008, 64, 10355-10364.	1.9	9
200	Synthesis and hybridization of oligonucleotides modified at AMP sites with adenine pyrrolidine phosphonate nucleotides. Collection of Czechoslovak Chemical Communications, 2009, 74, 935-955.	1.0	9
201	The synthesis of the 8-C-substituted 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP) derivatives by diverse cross-coupling reactions. Canadian Journal of Chemistry, 2011, 89, 488-498.	1.1	9
202	Synthesis of nucleosides and dNTPs bearing oligopyridine ligands linked through an octadiyne tether, their incorporation into DNA and complexation with transition metal cations. Organic and Biomolecular Chemistry, 2013, 11, 78-89.	2.8	9
203	Determination of the configuration in six-membered saturated heterocycles (N, P, S, Se) and their oxidation products using experimental and calculated NMR chemical shifts. Tetrahedron, 2014, 70, 3871-3886.	1.9	9
204	Methoxyphenol and Dihydrobenzofuran as Oxidizable Labels for Electrochemical Detection of DNA. ChemPlusChem, 2014, 79, 1703-1712.	2.8	9
205	C-H Trifluoromethylations of 1,3-Dimethyluracil and Reactivity of the Products in C-H Arylations. Heterocycles, 2014, 89, 1159.	0.7	9
206	Total syntheses of all tri-oxygenated 16-phytoprostane classes via a common precursor constructed by oxidative cyclization and alkyl–alkyl coupling reactions as the key steps. Organic and Biomolecular Chemistry, 2017, 15, 9408-9414.	2.8	9
207	Photochemical Câ [~] 'H Amination of Ethers and Geminal Difunctionalization Reactions in One Pot. Angewandte Chemie, 2019, 131, 12570-12575.	2.0	9
208	Helquats as Promoters of the Povarov Reaction: Synthesis of 1,2,3,4â€Tetrahydroquinoline Scaffolds Catalyzed by Heliceneâ€Viologen Hybrids. ChemPlusChem, 2020, 85, 2212-2218.	2.8	9
209	Stereoselective Synthesis of (Z)-β-Enamido Fluorides from N-Fluoroalkyl- and N-Sulfonyl-1,2,3-triazoles. Organic Letters, 2021, 23, 4224-4227.	4.6	9
210	SYNTHESIS OF RACEMIC AND ENANTIOMERIC 3-PYRROLIDINYL DERIVATIVES OF PURINE AND PYRIMIDINE NUCLEOBASES. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 805-808.	1.1	8
211	Tricyclic Purine Analogs Derived from 2-Amino-6-chloropurine and 2,6-Diaminopurine and Their Methylated Quaternary Salts. Collection of Czechoslovak Chemical Communications, 2006, 71, 77-90.	1.0	8
212	C-Functionalization of 9-deazapurines by cross-coupling reactions. Tetrahedron, 2007, 63, 1589-1601.	1.9	8
213	Synthesis of 6â€(4,5â€Dihydrofuranâ€2â€yl)―and 6â€(Tetrahydrofuranâ€2â€yl)purine Bases and Nucleosides. E Journal of Organic Chemistry, 2008, 2008, 2783-2788.	uropean 2.4	8
214	Syntheses of N3-substituted thymine acyclic nucleoside phosphonates and a comparison of their inhibitory effect towards thymidine phosphorylase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1364-1367.	2.2	8
215	The Synthesis and Conformation of Dihydroxypiperidinyl Derivates of Nucleobases as Novel Iminosugar Nucleoside Analogs. European Journal of Organic Chemistry, 2011, 2011, 2172-2187.	2.4	8
216	Synthesis of 6‧ubstituted 2(1 <i>H</i>)â€Pyridonâ€3â€yl <i>C</i> â€2â€2â€Deoxyribonucleosides. European Jo Organic Chamietry 2012, 2012, 1759, 1767	urnal of	8

Organic Chemistry, 2012, 2012, 1759-1767.

#	Article	IF	CITATIONS
217	The Control of the Tautomeric Equilibrium of Isocytosine by Intermolecular Interactions. European Journal of Organic Chemistry, 2018, 2018, 5128-5135.	2.4	8
218	Nucleotides bearing aminophenyl- or aminonaphthyl-3-methoxychromone solvatochromic fluorophores for the enzymatic construction of DNA probes for the detection of protein–DNA binding. Organic and Biomolecular Chemistry, 2021, 19, 9966-9974.	2.8	8
219	Cross-Coupling Reactions of Halopurines with Aryl- and AlkyltrifluoroÂborates; The Scope and Limitations in the Synthesis of Modified Purines. Synthesis, 2009, 2009, 1309-1317.	2.3	7
220	Synthesis of alkylcarbonate analogs of O-acetyl-ADP-ribose. Organic and Biomolecular Chemistry, 2013, 11, 5702.	2.8	7
221	Structural revisions of small molecules reported to cross-link G-quadruplex DNA in vivo reveal a repetitive assignment error in the literature. Scientific Reports, 2016, 6, 23499.	3.3	7
222	6-Aryl-4-amino-pyrimido[4,5-b]indole 2′-deoxyribonucleoside triphosphates (benzo-fused 7-deaza-dATP) Tj E binding study. Bioorganic and Medicinal Chemistry, 2016, 24, 4528-4535.	TQq0 0 0 rş 3.0	gBT /Overlock 7
223	Oxidative radical cyclizations of diketopiperazines bearing an amidomalonate unit. Heterointermediate reaction sequences toward the asperparalines and stephacidins. Free Radical Research, 2016, 50, S6-S17.	3.3	7
224	Limitations in the description of conformational preferences of C-disaccharides: The (1Â→Â3)-C-mannobiose case. Carbohydrate Research, 2017, 451, 42-50.	2.3	7
225	Unique Stereoselective Homolytic Câ^'O Bond Activation in Diketopiperazineâ€Derived Alkoxyamines by Adjacent Amide Pyramidalization. Chemistry - A European Journal, 2018, 24, 15336-15345.	3.3	7
226	Photocaged 5-(Hydroxymethyl)pyrimidine Nucleoside Phosphoramidites for Specific Photoactivatable Epigenetic Labeling of DNA. Organic Letters, 2020, 22, 9081-9085.	4.6	7
227	Synthesis, Photophysical Properties, and Biological Profiling of Benzothieno-Fused 7-Deazapurine Ribonucleosides. Journal of Organic Chemistry, 2020, 85, 8085-8101.	3.2	7
228	Aqueous-Phase Suzuki-Miyaura Cross-Coupling Reactions of Free Halopurine Bases. Synthesis, 2006, 2006, 3515-3526.	2.3	6
229	N-Branched acyclic nucleoside phosphonates as monomers for the synthesis of modified oligonucleotides. Organic and Biomolecular Chemistry, 2015, 13, 4449-4458.	2.8	6
230	Novel and Efficient Synthesis of <i>gem</i> â€Difluorinated Derivatives of Acyclic Nucleoside Phosphonates (ANPs). ChemistrySelect, 2016, 1, 2102-2106.	1.5	6
231	Synthesis and anti-trypanosomal activity of 3′-fluororibonucleosides derived from 7-deazapurine nucleosides. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127957.	2.2	6
232	Facile Approach to <i>C</i> â€Glucosides by Using a Protectingâ€Groupâ€Free Hiyama Crossâ€Coupling Reaction: Highâ€Yielding Dapagliflozin Synthesis. Chemistry - A European Journal, 2021, 27, 10583-10588.	3.3	6
233	Unlocking the Hydrolytic Mechanism of GH92 αâ€1,2â€Mannosidases: Computation Inspires the use of Câ€Glycosides as Michaelis Complex Mimics. Chemistry - A European Journal, 2022, 28, .	3.3	6
234	Efficiently Computing NMR ¹ H and ¹³ C Chemical Shifts of Saccharides in Aqueous Environment. Journal of Chemical Theory and Computation, 2022, 18, 4373-4386.	5.3	6

#	Article	IF	CITATIONS
235	Synthesis of Highly Symmetrical Triptycene Tetra- and Hexacarboxylates. Synthesis, 2007, 2007, 1554-1558.	2.3	5
236	Modular Synthesis of 4-Aryl- and 4-Amino-Substituted Benzene C-2′-Deoxyribonucleosides. Synthesis, 2008, 1918-1932.	2.3	5
237	Synthesis of (purin-6-yl)acetates and their transformations to 6-(2-hydroxyethyl)- and 6-(carbamoylmethyl)purines. Collection of Czechoslovak Chemical Communications, 2009, 74, 1035-1059.	1.0	5
238	Pyrrolidine nucleotide analogs with a tunable conformation. Beilstein Journal of Organic Chemistry, 2014, 10, 1967-1980.	2.2	5
239	The evolution of symmetrical snapping in termite soldiers need not lead to reduced chemical defence. Biological Journal of the Linnean Society, 2015, 115, 818-825.	1.6	5
240	Resolving Electronic Transitions in Synthetic Fluorescent Protein Chromophores by Magnetic Circular Dichroism. ChemPhysChem, 2016, 17, 2348-2354.	2.1	5
241	ChelatingÂPolymers for Hereditary Hemochromatosis Treatment. Macromolecular Bioscience, 2020, 20, 2000254.	4.1	5
242	Application of the Brook Rearrangement in Tandem with Single Electron Transfer Oxidative and Radical Processes. European Journal of Organic Chemistry, 2020, 2020, 2854-2866.	2.4	5
243	Sterically Crowded Heterocycles. X. A New Mechanistic Approach to the Ferricyanide Oxidation of 4,6'-Disubstituted 1-(Pyridin-2'-yl)-2,6-diphenylpyridinium Salts. Collection of Czechoslovak Chemical Communications, 1999, 64, 1274-1294.	1.0	5
244	Sterically Crowded Heterocycles. XI. A Semiempirical Prediction of Enantiomerization Barriers for Substituted (Z)-3-(Imidazo[1,2-a]pyridin-3-yl)-1-phenylprop-2-en-1-ones. Collection of Czechoslovak Chemical Communications, 1999, 64, 1761-1769.	1.0	5
245	Glyoxalâ€Linked Nucleotides and DNA for Bioconjugations and Crosslinking with Arginineâ€Containing Peptides and Proteins. Chemistry - A European Journal, 2022, 28, e202104208.	3.3	5
246	Homologues of epigenetic pyrimidines: 5-alkyl-, 5-hydroxyalkyl and 5-acyluracil and -cytosine nucleotides: synthesis, enzymatic incorporation into DNA and effect on transcription with bacterial RNA polymerase. RSC Chemical Biology, 2022, 3, 1069-1075.	4.1	5
247	LEGO-Lipophosphonoxins: A Novel Approach in Designing Membrane Targeting Antimicrobials. Journal of Medicinal Chemistry, 2022, 65, 10045-10078.	6.4	5
248	Synthesis of 2′-Deoxyuridine and 2′-Deoxycytidine Nucleosides Bearing Bipyridine and Terpyridine Ligands at Position 5. Synthesis, 2009, 2009, 105-112.	2.3	4
249	Preparation and redox properties of fluorinated 1,3-diphenylisobenzofurans. Electrochimica Acta, 2019, 321, 134659.	5.2	4
250	Synthesis of fluorinated acyclic nucleoside phosphonates with 5-azacytosine base moiety. Tetrahedron, 2019, 75, 130529.	1.9	4
251	α,γ-Dioxygenated amides via tandem Brook rearrangement/radical oxygenation reactions and their application to syntheses of γ-lactams. Beilstein Journal of Organic Chemistry, 2021, 17, 688-704.	2.2	4
252	<i>Helicobacter pylori</i> Xanthine–Guanine–Hypoxanthine Phosphoribosyltransferase—A Putative Target for Drug Discovery against Gastrointestinal Tract Infections. Journal of Medicinal Chemistry, 2021, 64, 5710-5729.	6.4	4

RADEK POHL

1

#	Article	IF	CITATIONS
253	Sterically Crowded Heterocycles. XII. Atropisomerism of (1-Aryl-3,5-diphenyl-1H-pyrrol-2-yl)(phenyl)methanones. Collection of Czechoslovak Chemical Communications, 2000, 65, 651-666.	1.0	3
254	Synthesis and Cytostatic Activity of Novel 6-(Difluoromethyl)purine Bases and Nucleosides. Synthesis, 2006, 2006, 1848-1852.	2.3	3
255	Syntheses of 1-[2-(Phosphonomethoxy)Alkyl]Thymine Monophosphates and an Evaluation of their Inhibitory Activity Toward Human Thymidine Phosphorylase. Nucleosides, Nucleotides and Nucleic Acids, 2012, 31, 159-171.	1.1	3
256	Chemical systematics of Neotropical termite genera with symmetrically snapping soldiers (Termitidae:) Tj ETQq0	0 0 rgBT /0 2.3	Overlock 10 ⁻
257	Lithium Chloride Catalyzed Asymmetric Domino Azaâ€Michael Addition/[3 + 2] Cycloaddition Reactions for the Synthesis of Spiro―and Bicyclic α,β,γâ€Triamino Acid Derivatives. European Journal of Organic Chemistry, 2018, 2018, 5213-5221.	2.4	3
258	Di(benzothienyl)cyclobutenes: Toward Strained Photoswitchable Fluorophores. ChemPlusChem, 2020, 85, 2084-2092.	2.8	3
259	Multipodal insulin mimetics built on adamantane or proline scaffolds. Bioorganic Chemistry, 2021, 107, 104548.	4.1	3
260	First Total Synthesis of Phytoprostanes with Prostaglandinâ€Like Configuration, Evidence for Their Formation in Edible Vegetable Oils and Orienting Study of Their Biological Activity. Chemistry - A European Journal, 2021, 27, 9556-9562.	3.3	3
261	1,3â€Diketoneâ€Modified Nucleotides and DNA for Crossâ€Linking with Arginineâ€Containing Peptides and Proteins. Angewandte Chemie, 2021, 133, 17523-17527.	2.0	3
262	The stability and reactivity of activated acryloylcarbamates as reagents for the synthesis of <i>N</i> â€1 substituted thymine and uracil – an NMR and DFT study. Journal of Physical Organic Chemistry, 2011, 24, 423-430.	1.9	2
263	Thienopyrrolo[2, 3â€ <i>d</i>]pyrimidines, New Tricyclic Nucleobase Analogues: Synthesis and Biological Activities. ChemistrySelect, 2018, 3, 9144-9149.	1.5	2
264	Straightforward synthesis of protected 2-hydroxyglycals by chlorination-dehydrochlorination of carbohydrate hemiacetals. Carbohydrate Research, 2020, 496, 108086.	2.3	2
265	Nonhydrolysable Analogues of (p)ppCpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools. ACS Chemical Biology, 2021, 16, 1680-1691.	3.4	2
266	Tandemreaktionen aus anionischer Oxy opeâ€Umlagerung und Oxygenierung als vielseitiger Zugang zu verschiedenartigen Gerüsten. Angewandte Chemie, 2020, 132, 6218-6223.	2.0	2

267	A Diastereoselective Catalytic Approach to Pentasubstituted Pyrrolidines by Tandem Anionicâ€Radical Crossâ€Over Reactions. Advanced Synthesis and Catalysis, 2022, 364, 671-678.	4.3	2
268	Versatile Synthesis of Triptycene Di- and Tetracarboxylic Acids. Synthesis, 2006, 2006, 2039-2042.	2.3	1
269	Determination of the Nucleic Acid Adducts Structure at the Nucleoside/Nucleotide Level by NMR Spectroscopy. Chemical Research in Toxicology, 2015, 28, 155-165.	3.3	1

Utilization of 1,3-Dioxolanes in the Synthesis of α-branched Alkyl and Aryl2709-[2-(Phosphonomethoxy)Ethyl]Purines and Study of the Influence of α-branched Substitution for1.1Potential Biological Activity. Nucleosides, Nucleotides and Nucleic Acids, 2019, 38, 119-156.1.1

#	Article	IF	CITATIONS
271	Pyrido-Fused Deazapurine Bases: Synthesis and Glycosylation of 4-Substituted 9 <i>H</i> -Pyrido[2′,3′:4,5]- and Pyrido[4′,3′:4,5]pyrrolo[2,3- <i>d</i>]pyrimidines. ACS Omega, 2020, 5, 26278-26286.	3.5	1
272	Sterically Crowded Heterocycles. XIII. An Insight Into the Absolute Stereochemistry of Atropisomeric (Z)-3-(Imidazo[1,2-a]pyridin-3-yl)prop-2-en-1-ones. Collection of Czechoslovak Chemical Communications, 2000, 65, 1643-1652.	1.0	0
273	Regioselectivity in Cross-Coupling Reactions of 2,6,8-Trichloro-9-(tetrahydropyran-2-yl)purine: Synthesis of 2,6,8-Trisubstituted Purine Bases ChemInform, 2005, 36, no.	0.0	0
274	Facile Approach to Câ€glucosides by Using a Protectingâ€Groupâ€Free Hiyama Crossâ€Coupling Reaction: Highâ€Yielding Dapagliflozin Synthesis. Chemistry - A European Journal, 2021, 27, 10488.	3.3	0