List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387562/publications.pdf Version: 2024-02-01

628 papers	100,924 citations	132 160 h-index	402 278 g-index
715 all docs	715 docs citations	715 times ranked	59749 citing authors

#	Article	IF	CITATIONS
1	Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373, 871-876.	12.6	2,843
2	Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 2004, 32, W526-W531.	14.5	1,683
3	Rosetta3. Methods in Enzymology, 2011, 487, 545-574.	1.0	1,620
4	Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science, 2003, 302, 1364-1368.	12.6	1,471
5	Contact order, transition state placement and the refolding rates of single domain proteins 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 277, 985-994.	4.2	1,449
6	Protein Structure Prediction and Structural Genomics. Science, 2001, 294, 93-96.	12.6	1,445
7	Protein Structure Prediction Using Rosetta. Methods in Enzymology, 2004, 383, 66-93.	1.0	1,445
8	Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature, 2010, 468, 790-795.	27.8	1,359
9	Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. Journal of Molecular Biology, 1997, 268, 209-225.	4.2	1,268
10	Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1496-1503.	7.1	1,135
11	Kemp elimination catalysts by computational enzyme design. Nature, 2008, 453, 190-195.	27.8	1,130
12	Improving physical realism, stereochemistry, and sideâ€chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins: Structure, Function and Bioinformatics, 2009, 77, 114-122.	2.6	1,105
13	The coming of age of de novo protein design. Nature, 2016, 537, 320-327.	27.8	1,069
14	Predicting protein structures with a multiplayer online game. Nature, 2010, 466, 756-760.	27.8	1,062
15	The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. Journal of Chemical Theory and Computation, 2017, 13, 3031-3048.	5.3	1,032
16	De Novo Computational Design of Retro-Aldol Enzymes. Science, 2008, 319, 1387-1391.	12.6	1,031
17	Protein–Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations. Journal of Molecular Biology, 2003, 331, 281-299.	4.2	1,017
18	High-Resolution Comparative Modeling with RosettaCM. Structure, 2013, 21, 1735-1742.	3.3	1,010

#	Article	IF	CITATIONS
19	Macromolecular Modeling with Rosetta. Annual Review of Biochemistry, 2008, 77, 363-382.	11.1	841
20	Toward High-Resolution de Novo Structure Prediction for Small Proteins. Science, 2005, 309, 1868-1871.	12.6	797
21	Consistent blind protein structure generation from NMR chemical shift data. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4685-4690.	7.1	776
22	Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. Science, 2010, 329, 309-313.	12.6	776
23	A simple physical model for binding energy hot spots in protein-protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14116-14121.	7.1	754
24	Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10383-10388.	7.1	741
25	A surprising simplicity to protein folding. Nature, 2000, 405, 39-42.	27.8	711
26	Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science, 2013, 340, 711-716.	12.6	680
27	An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae. Science, 2012, 335, 308-313.	12.6	642
28	Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15674-15679.	7.1	605
29	Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. Science, 2012, 336, 1171-1174.	12.6	588
30	High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-Tubulin upon GTP Hydrolysis. Cell, 2014, 157, 1117-1129.	28.9	582
31	Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. ELife, 2014, 3, e02030.	6.0	571
32	Role of conformational sampling in computing mutationâ€induced changes in protein structure and stability. Proteins: Structure, Function and Bioinformatics, 2011, 79, 830-838.	2.6	550
33	Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin. Science, 2011, 332, 816-821.	12.6	527
34	Principles for designing ideal protein structures. Nature, 2012, 491, 222-227.	27.8	522
35	Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature Methods, 2020, 17, 665-680.	19.0	513
36	RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite. PLoS ONE, 2011, 6, e20161.	2.5	506

#	Article	IF	CITATIONS
37	Accurate design of co-assembling multi-component protein nanomaterials. Nature, 2014, 510, 103-108.	27.8	504
38	High-resolution mapping of protein sequence-function relationships. Nature Methods, 2010, 7, 741-746.	19.0	482
39	Computational Alanine Scanning of Protein-Protein Interfaces. Science Signaling, 2004, 2004, pl2-pl2.	3.6	471
40	Accurate design of megadalton-scale two-component icosahedral protein complexes. Science, 2016, 353, 389-394.	12.6	466
41	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	12.6	464
42	Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nature Structural and Molecular Biology, 2011, 18, 1175-1177.	8.2	463
43	An Orientation-dependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein–Protein Complexes. Journal of Molecular Biology, 2003, 326, 1239-1259.	4.2	460
44	Protein structure determination using metagenome sequence data. Science, 2017, 355, 294-298.	12.6	456
45	Ca2+ Indicators Based on Computationally Redesigned Calmodulin-Peptide Pairs. Chemistry and Biology, 2006, 13, 521-530.	6.0	455
46	Proof of principle for epitope-focused vaccine design. Nature, 2014, 507, 201-206.	27.8	451
47	Algorithm discovery by protein folding game players. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18949-18953.	7.1	450
48	Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins: Structure, Function and Bioinformatics, 1999, 37, 171-176.	2.6	435
49	Structure prediction for CASP8 with allâ€atom refinement using Rosetta. Proteins: Structure, Function and Bioinformatics, 2009, 77, 89-99.	2.6	425
50	ROSETTALIGAND: Protein-small molecule docking with full side-chain flexibility. Proteins: Structure, Function and Bioinformatics, 2006, 65, 538-548.	2.6	421
51	Computational Enzyme Design. Angewandte Chemie - International Edition, 2013, 52, 5700-5725.	13.8	413
52	Protein–Protein Docking with Backbone Flexibility. Journal of Molecular Biology, 2007, 373, 503-519.	4.2	401
53	Automated <i>de novo</i> prediction of native-like RNA tertiary structures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14664-14669.	7.1	397
54	Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 2011, 475, 96-100.	27.8	394

#	Article	IF	CITATIONS
55	Global analysis of protein folding using massively parallel design, synthesis, and testing. Science, 2017, 357, 168-175.	12.6	392
56	Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. , 1999, 34, 82-95.		389
57	Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. Journal of Chemical Theory and Computation, 2016, 12, 6201-6212.	5.3	382
58	RosettaLigand Docking with Full Ligand and Receptor Flexibility. Journal of Molecular Biology, 2009, 385, 381-392.	4.2	376
59	Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell, 1991, 66, 433-449.	28.9	373
60	Design of a hyperstable 60-subunit protein icosahedron. Nature, 2016, 535, 136-139.	27.8	373
61	The 3D profile method for identifying fibril-forming segments of proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4074-4078.	7.1	372
62	Computational design of ligand-binding proteins with high affinity and selectivity. Nature, 2013, 501, 212-216.	27.8	370
63	De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565, 186-191.	27.8	362
64	Topology, Stability, Sequence, and Length:  Defining the Determinants of Two-State Protein Folding Kinetics. Biochemistry, 2000, 39, 11177-11183.	2.5	360
65	Massively parallel de novo protein design for targeted therapeutics. Nature, 2017, 550, 74-79.	27.8	354
66	Experiment and theory highlight role of native state topology in SH3 folding. Nature Structural Biology, 1999, 6, 1016-1024.	9.7	349
67	Critical role of beta-hairpin formation in protein G folding. Nature Structural Biology, 2000, 7, 669-673.	9.7	345
68	Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nature Biotechnology, 2012, 30, 543-548.	17.5	342
69	Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell, 2019, 176, 1420-1431.e17.	28.9	339
70	Computational Thermostabilization of an Enzyme. Science, 2005, 308, 857-860.	12.6	337
71	Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell, 1988, 54, 335-344.	28.9	336
72	Prediction of local structure in proteins using a library of sequence-structure motifs. Journal of Molecular Biology, 1998, 281, 565-577.	4.2	331

#	Article	IF	CITATIONS
73	Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods, 2010, 7, 291-294.	19.0	328
74	Contact order revisited: Influence of protein size on the folding rate. Protein Science, 2003, 12, 2057-2062.	7.6	327
75	Accurate de novo design of hyperstable constrained peptides. Nature, 2016, 538, 329-335.	27.8	327
76	Alternate States of Proteins Revealed by Detailed Energy Landscape Mapping. Journal of Molecular Biology, 2011, 405, 607-618.	4.2	324
77	New algorithms and an in silico benchmark for computational enzyme design. Protein Science, 2006, 15, 2785-2794.	7.6	323
78	Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Science, 2014, 23, 47-55.	7.6	323
79	A protein-folding reaction under kinetic control. Nature, 1992, 356, 263-265.	27.8	318
80	Computed structures of core eukaryotic protein complexes. Science, 2021, 374, eabm4805.	12.6	316
81	Atomic-accuracy models from 4.5-Ã cryo-electron microscopy data with density-guided iterative local refinement. Nature Methods, 2015, 12, 361-365.	19.0	313
82	RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design. PLoS ONE, 2011, 6, e24109.	2.5	310
83	Atomic model of the type III secretion system needle. Nature, 2012, 486, 276-279.	27.8	308
84	Multipass membrane protein structure prediction using Rosetta. Proteins: Structure, Function and Bioinformatics, 2005, 62, 1010-1025.	2.6	303
85	A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature, 2011, 473, 212-215.	27.8	303
86	Computational redesign of endonuclease DNA binding and cleavage specificity. Nature, 2006, 441, 656-659.	27.8	300
87	High-resolution structure prediction and the crystallographic phase problem. Nature, 2007, 450, 259-264.	27.8	296
88	A Large Scale Test of Computational Protein Design: Folding and Stability of Nine Completely Redesigned Globular Proteins. Journal of Molecular Biology, 2003, 332, 449-460.	4.2	293
89	Modeling structurally variable regions in homologous proteins with rosetta. Proteins: Structure, Function and Bioinformatics, 2004, 55, 656-677.	2.6	292
90	The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 2021, 16, 5634-5651.	12.0	290

#	Article	IF	CITATIONS
91	HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins 1 1Edited by J. Thornton. Journal of Molecular Biology, 2000, 301, 173-190.	4.2	286
92	Computational protein design enables a novel one-carbon assimilation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3704-3709.	7.1	286
93	De novo protein design by deep network hallucination. Nature, 2021, 600, 547-552.	27.8	280
94	Functional rapidly folding proteins from simplified amino acid sequences. Nature Structural Biology, 1997, 4, 805-809.	9.7	279
95	Computational redesign of protein-protein interaction specificity. Nature Structural and Molecular Biology, 2004, 11, 371-379.	8.2	279
96	Ab Initio Protein Structure Prediction: Progress and Prospects. Annual Review of Biophysics and Biomolecular Structure, 2001, 30, 173-189.	18.3	278
97	Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nature Structural and Molecular Biology, 1998, 5, 714-720.	8.2	277
98	De Novo Enzyme Design Using Rosetta3. PLoS ONE, 2011, 6, e19230.	2.5	274
99	Engineering an allosteric transcription factor to respond to new ligands. Nature Methods, 2016, 13, 177-183.	19.0	274
100	Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta. Journal of Molecular Biology, 2009, 392, 181-190.	4.2	272
101	Progress in Modeling of Protein Structures and Interactions. Science, 2005, 310, 638-642.	12.6	271
102	De novo design of a fluorescence-activating β-barrel. Nature, 2018, 561, 485-491.	27.8	269
103	Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature, 2011, 477, 111-114.	27.8	265
104	High thermodynamic stability of parametrically designed helical bundles. Science, 2014, 346, 481-485.	12.6	264
105	Surrogate Wnt agonists that phenocopy canonical Wnt and \hat{I}^2 -catenin signalling. Nature, 2017, 545, 234-237.	27.8	264
106	De novo design of protein homo-oligomers with modular hydrogen-bond network–mediated specificity. Science, 2016, 352, 680-687.	12.6	262
107	Automated prediction of CASP-5 structures using the Robetta server. Proteins: Structure, Function and Bioinformatics, 2003, 53, 524-533.	2.6	261
108	Elicitation of structure-specific antibodies by epitope scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17880-17887.	7.1	261

#	Article	IF	CITATIONS
109	Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nature Biotechnology, 2012, 30, 190-192.	17.5	259
110	Mechanisms of protein folding. Current Opinion in Structural Biology, 2001, 11, 70-82.	5.7	258
111	Clustering of low-energy conformations near the native structures of small proteins. Proceedings of the United States of America, 1998, 95, 11158-11162.	7.1	255
112	Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science, 2018, 359, 1037-1042.	12.6	254
113	Assigning Function to Yeast Proteins by Integration of Technologies. Molecular Cell, 2003, 12, 1353-1365.	9.7	248
114	Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nature Chemistry, 2017, 9, 50-56.	13.6	248
115	Kinetics versus Thermodynamics in Protein Folding. Biochemistry, 1994, 33, 7505-7509.	2.5	245
116	NMR Structure Determination for Larger Proteins Using Backbone-Only Data. Science, 2010, 327, 1014-1018.	12.6	245
117	Rosetta in CASP4: Progress in ab initio protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2001, 45, 119-126.	2.6	242
118	Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Science Immunology, 2019, 4, .	11.9	242
119	De Novo Prediction of Three-dimensional Structures for Major Protein Families. Journal of Molecular Biology, 2002, 322, 65-78.	4.2	237
120	De novo protein structure generation from incomplete chemical shift assignments. Journal of Biomolecular NMR, 2009, 43, 63-78.	2.8	234
121	A Pareto-Optimal Refinement Method for Protein Design Scaffolds. PLoS ONE, 2013, 8, e59004.	2.5	233
122	Large-scale determination of previously unsolved protein structures using evolutionary information. ELife, 2015, 4, e09248.	6.0	229
123	Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6946-6951.	7.1	227
124	Exploring the repeat protein universe through computational protein design. Nature, 2015, 528, 580-584.	27.8	227
125	Improved molecular replacement by density- and energy-guided protein structure optimization. Nature, 2011, 473, 540-543.	27.8	226
126	Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E93-102.	7.1	223

#	Article	IF	CITATIONS
127	A breakdown of symmetry in the folding transition state of protein L. Journal of Molecular Biology, 2000, 298, 971-984.	4.2	222
128	Toward high-resolution prediction and design of transmembrane helical protein structures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15682-15687.	7.1	221
129	Evolution of a designed retro-aldolase leads to complete active site remodeling. Nature Chemical Biology, 2013, 9, 494-498.	8.0	220
130	Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7292-7297.	7.1	219
131	Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science, 2015, 348, 1365-1368.	12.6	219
132	Design, Activity, and Structure of a Highly Specific Artificial Endonuclease. Molecular Cell, 2002, 10, 895-905.	9.7	218
133	Structure of the Type VI Secretion System Contractile Sheath. Cell, 2015, 160, 952-962.	28.9	216
134	Improved side-chain modeling for protein-protein docking. Protein Science, 2005, 14, 1328-1339.	7.6	215
135	De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nature Chemical Biology, 2016, 12, 29-34.	8.0	214
136	Computational design of protein–protein interactions. Current Opinion in Chemical Biology, 2004, 8, 91-97.	6.1	213
137	Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold. Science, 2011, 334, 373-376.	12.6	212
138	A Vast Repertoire of Dscam Binding Specificities Arises from Modular Interactions of Variable Ig Domains. Cell, 2007, 130, 1134-1145.	28.9	210
139	Protein interaction networks revealed by proteome coevolution. Science, 2019, 365, 185-189.	12.6	208
140	Computer-based redesign of a protein folding pathway. Nature Structural Biology, 2001, 8, 602-605.	9.7	206
141	Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nature Chemical Biology, 2012, 8, 294-300.	8.0	205
142	Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10358-10363.	7.1	205
143	Computationally designed libraries for rapid enzyme stabilization. Protein Engineering, Design and Selection, 2014, 27, 49-58.	2.1	205
144	Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. Journal of Chemical Theory and Computation, 2015, 11, 609-622.	5.3	204

#	Article	IF	CITATIONS
145	Computational Design of Epitope-Scaffolds Allows Induction of Antibodies Specific for a Poorly Immunogenic HIV Vaccine Epitope. Structure, 2010, 18, 1116-1126.	3.3	203
146	Modeling Symmetric Macromolecular Structures in Rosetta3. PLoS ONE, 2011, 6, e20450.	2.5	197
147	GTP-binding Ypt1 protein and Ca2+ function independently in a cell-free protein transport reaction Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 355-359.	7.1	195
148	Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement. Methods in Enzymology, 2013, 523, 109-143.	1.0	195
149	Evaluation of Structural and Evolutionary Contributions to Deleterious Mutation Prediction. Journal of Molecular Biology, 2002, 322, 891-901.	4.2	193
150	Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proceedings of the United States of America, 2011, 108, 1355-1360.	7.1	191
151	Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins: Structure, Function and Bioinformatics, 1999, 37, 171-176.	2.6	191
152	De novo design of bioactive protein switches. Nature, 2019, 572, 205-210.	27.8	190
153	Determination of solution structures of proteins up to 40ÂkDa using CS-Rosetta with sparse NMR data from deuterated samples. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10873-10878.	7.1	188
154	Folding Dynamics of the src SH3 Domainâ€. Biochemistry, 1997, 36, 15685-15692.	2.5	186
155	A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450 _{BM3} . ACS Chemical Biology, 2009, 4, 261-267.	3.4	184
156	Realistic protein-protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness. Protein Science, 2004, 13, 1660-1669.	7.6	181
157	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	27.8	180
158	Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins: Structure, Function and Bioinformatics, 2007, 69, 118-128.	2.6	178
159	De Novo Determination of Protein Backbone Structure from Residual Dipolar Couplings Using Rosetta. Journal of the American Chemical Society, 2002, 124, 2723-2729.	13.7	177
160	Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nature Methods, 2013, 10, 1102-1104.	19.0	175
161	Evolution of a designed protein assembly encapsulating its own RNA genome. Nature, 2017, 552, 415-420.	27.8	174
162	The role of pro regions in protein folding. Current Opinion in Cell Biology, 1993, 5, 966-970.	5.4	172

#	Article	IF	CITATIONS
163	The Acidic Transcription Activator Gcn4 Binds the Mediator Subunit Gal11/Med15ÂUsing a Simple Protein Interface Forming a Fuzzy Complex. Molecular Cell, 2011, 44, 942-953.	9.7	172
164	De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nature Methods, 2015, 12, 335-338.	19.0	172
165	Generalized Fragment Picking in Rosetta: Design, Protocols and Applications. PLoS ONE, 2011, 6, e23294.	2.5	172
166	Coupled prediction of protein secondary and tertiary structure. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12105-12110.	7.1	170
167	A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nature Structural and Molecular Biology, 2009, 16, 468-476.	8.2	170
168	Prospects for ab initio protein structural genomics. Journal of Molecular Biology, 2001, 306, 1191-1199.	4.2	168
169	Chain collapse can occur concomitantly with the rate-limiting step in protein folding. Nature Structural Biology, 1999, 6, 554-556.	9.7	167
170	Protein-DNA binding specificity predictions with structural models. Nucleic Acids Research, 2005, 33, 5781-5798.	14.5	167
171	Origins of coevolution between residues distant in protein 3D structures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9122-9127.	7.1	167
172	Prediction of the structure of symmetrical protein assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17656-17661.	7.1	164
173	Design of protein-binding proteins from the target structure alone. Nature, 2022, 605, 551-560.	27.8	164
174	De novo protein structure determination using sparse NMR data. Journal of Biomolecular NMR, 2000, 18, 311-318.	2.8	162
175	Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins: Structure, Function and Bioinformatics, 2003, 53, 457-468.	2.6	162
176	Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nature Chemical Biology, 2014, 10, 598-603.	8.0	161
177	Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature, 2017, 548, 352-355.	27.8	160
178	Improved protein structure refinement guided by deep learning based accuracy estimation. Nature Communications, 2021, 12, 1340.	12.8	160
179	A De Novo Protein Binding Pair By Computational Design and Directed Evolution. Molecular Cell, 2011, 42, 250-260.	9.7	159
180	Evolutionary Optimization of Computationally Designed Enzymes: Kemp Eliminases of the KE07 Series. Journal of Molecular Biology, 2010, 396, 1025-1042.	4.2	154

#	Article	IF	CITATIONS
181	Kinetics of Folding of the IgG Binding Domain of Peptostreptoccocal Protein L. Biochemistry, 1997, 36, 3373-3382.	2.5	153
182	Emergence of symmetry in homooligomeric biological assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16148-16152.	7.1	153
183	An exciting but challenging road ahead for computational enzyme design. Protein Science, 2010, 19, 1817-1819.	7.6	153
184	De novo design of modular and tunable protein biosensors. Nature, 2021, 591, 482-487.	27.8	153
185	Optimization of the In-Silico-Designed Kemp Eliminase KE70 by Computational Design and Directed Evolution. Journal of Molecular Biology, 2011, 407, 391-412.	4.2	152
186	Matching theory and experiment in protein folding. Current Opinion in Structural Biology, 1999, 9, 189-196.	5.7	151
187	megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Research, 2014, 42, 2591-2601.	14.5	151
188	De novo design of protein logic gates. Science, 2020, 368, 78-84.	12.6	151
189	An improved protein decoy set for testing energy functions for protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2003, 53, 76-87.	2.6	150
190	Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5361-5366.	7.1	149
191	Accurate computational design of multipass transmembrane proteins. Science, 2018, 359, 1042-1046.	12.6	149
192	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	12.8	149
193	Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast Journal of Cell Biology, 1988, 106, 1453-1461.	5.2	148
194	Comprehensive computational design of ordered peptide macrocycles. Science, 2017, 358, 1461-1466.	12.6	146
195	Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in Drosophila oogenesis. Cell, 1993, 73, 953-965.	28.9	145
196	Simultaneous prediction of protein folding and docking at high resolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18978-18983.	7.1	145
197	A general strategy to construct small molecule biosensors in eukaryotes. ELife, 2015, 4, .	6.0	145
198	FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLoS Computational Biology, 2015, 11, e1004556.	3.2	144

#	Article	IF	CITATIONS
199	Progress and challenges in high-resolution refinement of protein structure models. Proteins: Structure, Function and Bioinformatics, 2005, 59, 15-29.	2.6	142
200	The Structure of a Receptor with Two Associating Transmembrane Domains on the Cell Surface: Integrin αIIbβ3. Molecular Cell, 2009, 34, 234-249.	9.7	142
201	Prediction of membrane protein structures with complex topologies using limited constraints. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1409-1414.	7.1	140
202	Programmable design of orthogonal protein heterodimers. Nature, 2019, 565, 106-111.	27.8	139
203	Computational Design of Catalytic Dyads and Oxyanion Holes for Ester Hydrolysis. Journal of the American Chemical Society, 2012, 134, 16197-16206.	13.7	138
204	Robust design and optimization of retroaldol enzymes. Protein Science, 2012, 21, 717-726.	7.6	137
205	Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nature Communications, 2013, 4, 2974.	12.8	134
206	RosettaHoles: Rapid assessment of protein core packing for structure prediction, refinement, design, and validation. Protein Science, 2009, 18, 229-239.	7.6	133
207	Molecular dynamics in the endgame of protein structure prediction. Journal of Molecular Biology, 2001, 313, 417-430.	4.2	132
208	Convergent Mechanisms for Recognition of Divergent Cytokines by the Shared Signaling Receptor gp130. Molecular Cell, 2003, 12, 577-589.	9.7	131
209	Free modeling with Rosetta in CASP6. Proteins: Structure, Function and Bioinformatics, 2005, 61, 128-134.	2.6	131
210	Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology, 2011, 414, 289-302.	4.2	131
211	phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta. Journal of Structural and Functional Genomics, 2012, 13, 81-90.	1.2	131
212	The Highly Cooperative Folding of Small Naturally Occurring Proteins Is Likely the Result of Natural Selection. Cell, 2007, 128, 613-624.	28.9	130
213	Computational design of self-assembling cyclic protein homo-oligomers. Nature Chemistry, 2017, 9, 353-360.	13.6	130
214	A "solvated rotamer―approach to modeling water-mediated hydrogen bonds at protein-protein interfaces. Proteins: Structure, Function and Bioinformatics, 2005, 58, 893-904.	2.6	129
215	What has de novo protein design taught us about protein folding and biophysics?. Protein Science, 2019, 28, 678-683.	7.6	129
216	Cooperative hydrogen bonding in amyloid formation. Protein Science, 2007, 16, 761-764.	7.6	127

#	Article	IF	CITATIONS
217	Long-range order in the src SH3 folding transition state. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7084-7089.	7.1	126
218	Computational Design of a New Hydrogen Bond Network and at Least a 300-fold Specificity Switch at a Proteinâ^'Protein Interface. Journal of Molecular Biology, 2006, 361, 195-208.	4.2	126
219	The road to fully programmable protein catalysis. Nature, 2022, 606, 49-58.	27.8	126
220	Prediction of CASP6 structures using automated robetta protocols. Proteins: Structure, Function and Bioinformatics, 2005, 61, 157-166.	2.6	124
221	Dissecting muscle and neuronal disorders in a Drosophila model of muscular dystrophy. EMBO Journal, 2007, 26, 481-493.	7.8	123
222	Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14879-14884.	7.1	123
223	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	6.0	123
224	Computational design of transmembrane pores. Nature, 2020, 585, 129-134.	27.8	120
225	Protease pro region required for folding is a potent inhibitor of the mature enzyme. Proteins: Structure, Function and Bioinformatics, 1992, 12, 339-344.	2.6	119
226	Enantioselective Enzymes by Computational Design and In Silico Screening. Angewandte Chemie - International Edition, 2015, 54, 3726-3730.	13.8	119
227	A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells. Cell, 2014, 157, 1644-1656.	28.9	118
228	Principles for designing proteins with cavities formed by curved \hat{I}^2 sheets. Science, 2017, 355, 201-206.	12.6	117
229	Designed protein logic to target cells with precise combinations of surface antigens. Science, 2020, 369, 1637-1643.	12.6	117
230	Removing T-cell epitopes with computational protein design. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8577-8582.	7.1	115
231	The sequences of small proteins are not extensively optimized for rapid folding by natural selection. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4982-4986.	7.1	113
232	Rapid protein fold determination using unassigned NMR data. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15404-15409.	7.1	113
233	Rational design of α-helical tandem repeat proteins with closed architectures. Nature, 2015, 528, 585-588.	27.8	113
234	Control over overall shape and size in de novo designed proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5478-85.	7.1	113

#	Article	IF	CITATIONS
235	Alteration of enzyme specificity by computational loop remodeling and design. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9215-9220.	7.1	112
236	The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10080-10085.	7.1	112
237	De novo design of self-assembling helical protein filaments. Science, 2018, 362, 705-709.	12.6	112
238	Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. Proceedings of the United States of America, 2014, 111, 8013-8018.	7.1	111
239	NMR characterization of residual structure in the denatured state of protein L. Journal of Molecular Biology, 2000, 299, 1341-1351.	4.2	110
240	High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nature Communications, 2014, 5, 4976.	12.8	110
241	A Double S Shape Provides the Structural Basis for the Extraordinary Binding Specificity of Dscam Isoforms. Cell, 2008, 134, 1007-1018.	28.9	109
242	De novo design of tunable, pH-driven conformational changes. Science, 2019, 364, 658-664.	12.6	109
243	Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nature Biotechnology, 2017, 35, 667-671.	17.5	108
244	Structural Plasticity of Helical Nanotubes Based on Coiled-Coil Assemblies. Structure, 2015, 23, 280-289.	3.3	107
245	Protein Structure Determination from Pseudocontact Shifts Using ROSETTA. Journal of Molecular Biology, 2012, 416, 668-677.	4.2	106
246	Computational Design of an α-Gliadin Peptidase. Journal of the American Chemical Society, 2012, 134, 20513-20520.	13.7	106
247	De novo protein design by citizen scientists. Nature, 2019, 570, 390-394.	27.8	105
248	Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8571-8576.	7.1	104
249	Designed proteins assemble antibodies into modular nanocages. Science, 2021, 372, .	12.6	104
250	Protein structure prediction in 2002. Current Opinion in Structural Biology, 2002, 12, 348-354.	5.7	103
251	Protein-protein docking predictions for the CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2003, 52, 118-122.	2.6	102
252	A desolvation barrier to hydrophobic cluster formation may contribute to the rateâ€limiting step in protein folding. Protein Science, 1997, 6, 347-354.	7.6	101

#	Article	IF	CITATIONS
253	The challenge of designing scientific discovery games. , 2010, , .		101
254	De novo design of a non-local β-sheet protein with high stability and accuracy. Nature Structural and Molecular Biology, 2018, 25, 1028-1034.	8.2	101
255	Symmetry Recognizing Asymmetry. Structure, 2003, 11, 411-422.	3.3	99
256	Computational Design of High-Affinity Epitope Scaffolds by Backbone Grafting of a Linear Epitope. Journal of Molecular Biology, 2012, 415, 175-192.	4.2	99
257	Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. Journal of the American Chemical Society, 2015, 137, 13106-13113.	13.7	99
258	A Potent Anti-Malarial Human Monoclonal Antibody Targets Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver. Immunity, 2020, 53, 733-744.e8.	14.3	99
259	Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins: Structure, Function and Bioinformatics, 1999, 37, 171-176.	2.6	99
260	Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection. Nucleic Acids Research, 2006, 34, e112-e112.	14.5	98
261	Evaluation and ranking of enzyme designs. Protein Science, 2010, 19, 1760-1773.	7.6	98
262	Protein sequence design by conformational landscape optimization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	97
263	Improved de novo structure prediction in <scp>CASP</scp> 11 by incorporating coevolution information into Rosetta. Proteins: Structure, Function and Bioinformatics, 2016, 84, 67-75.	2.6	96
264	Modular and tunable biological feedback control using a de novo protein switch. Nature, 2019, 572, 265-269.	27.8	96
265	Contact order and ab initio protein structure prediction. Protein Science, 2002, 11, 1937-1944.	7.6	95
266	Computational Design of an Unnatural Amino Acid Dependent Metalloprotein with Atomic Level Accuracy. Journal of the American Chemical Society, 2013, 135, 13393-13399.	13.7	95
267	Role of the Biomolecular Energy Gap in Protein Design, Structure, and Evolution. Cell, 2012, 149, 262-273.	28.9	94
268	Progress in protein-protein docking: Atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Proteins: Structure, Function and Bioinformatics, 2005, 60, 187-194.	2.6	92
269	Sampling Bottlenecks in De novo Protein Structure Prediction. Journal of Molecular Biology, 2009, 393, 249-260.	4.2	92
270	Origins of catalysis by computationally designed retroaldolase enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4937-4942.	7.1	92

#	Article	IF	CITATIONS
271	Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. Journal of Molecular Biology, 1999, 291, 215-225.	4.2	91
272	Engineering V-Type Nerve Agents Detoxifying Enzymes Using Computationally Focused Libraries. ACS Chemical Biology, 2013, 8, 2394-2403.	3.4	91
273	The NMR–Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 971-976.	7.1	91
274	Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Research, 2010, 38, 5601-5608.	14.5	90
275	A Simple Physical Model for the Prediction and Design of Protein–DNA Interactions. Journal of Molecular Biology, 2004, 344, 59-70.	4.2	89
276	Topological control of cytokine receptor signaling induces differential effects in hematopoiesis. Science, 2019, 364, .	12.6	89
277	Exploring folding free energy landscapes using computational protein design. Current Opinion in Structural Biology, 2004, 14, 89-95.	5.7	88
278	Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16083-16088.	7.1	88
279	Advances, Interactions, and Future Developments in the CNS, Phenix, and Rosetta Structural Biology Software Systems. Annual Review of Biophysics, 2013, 42, 265-287.	10.0	88
280	Structural and energetic basis of folded-protein transport by the FimD usher. Nature, 2013, 496, 243-246.	27.8	88
281	Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. Nature Protocols, 2020, 15, 1132-1157.	12.0	88
282	Scoring functions for protein–protein interactions. Current Opinion in Structural Biology, 2013, 23, 862-867.	5.7	87
283	One contact for every twelve residues allows robust and accurate topologyâ€level protein structure modeling. Proteins: Structure, Function and Bioinformatics, 2014, 82, 208-218.	2.6	87
284	Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design. Journal of the American Chemical Society, 2015, 137, 10414-10419.	13.7	87
285	Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1980-1987.	2.6	87
286	Characterization of the Folding Energy Landscapes of Computer Generated Proteins Suggests High Folding Free Energy Barriers and Cooperativity may be Consequences of Natural Selection. Journal of Molecular Biology, 2004, 338, 573-583.	4.2	86
287	CASP6 assessment of contact prediction. Proteins: Structure, Function and Bioinformatics, 2005, 61, 214-224.	2.6	86
288	Exploitation of binding energy for catalysis and design. Nature, 2009, 461, 1300-1304.	27.8	86

#	Article	IF	CITATIONS
289	Contrasting roles for symmetrically disposed β-turns in the folding of a small protein. Journal of Molecular Biology, 1997, 274, 588-596.	4.2	85
290	Automated prediction of domain boundaries in CASP6 targets using Ginzu and RosettaDOM. Proteins: Structure, Function and Bioinformatics, 2005, 61, 193-200.	2.6	85
291	Computational Design of a Protein-Based Enzyme Inhibitor. Journal of Molecular Biology, 2013, 425, 3563-3575.	4.2	85
292	Protein structure prediction using Rosetta in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 113-121.	2.6	85
293	Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature, 2019, 571, 251-256.	27.8	85
294	Perturbing the energy landscape for improved packing during computational protein design. Proteins: Structure, Function and Bioinformatics, 2021, 89, 436-449.	2.6	85
295	Design of biologically active binary protein 2D materials. Nature, 2021, 589, 468-473.	27.8	85
296	High-resolution Structural and Thermodynamic Analysis of Extreme Stabilization of Human Procarboxypeptidase by Computational Protein Design. Journal of Molecular Biology, 2007, 366, 1209-1221.	4.2	84
297	Control of repeat-protein curvature by computational protein design. Nature Structural and Molecular Biology, 2015, 22, 167-174.	8.2	84
298	Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy InÂVivo. Cell Stem Cell, 2020, 27, 840-851.e6.	11.1	84
299	Recurring Local Sequence Motifs in Proteins. Journal of Molecular Biology, 1995, 251, 176-187.	4.2	83
300	Catalytic Mechanism and Performance of Computationally Designed Enzymes for Kemp Elimination. Journal of the American Chemical Society, 2008, 130, 15907-15915.	13.7	83
301	Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nature Communications, 2017, 8, 2047.	12.8	83
302	De novo design of transmembrane \hat{l}^2 barrels. Science, 2021, 371, .	12.6	83
303	A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nature Communications, 2019, 10, 565.	12.8	82
304	Simple Physical Models Connect Theory and Experiment in Protein Folding Kinetics. Journal of Molecular Biology, 2002, 322, 463-476.	4.2	81
305	Evolutionary conservation in protein folding kinetics. Journal of Molecular Biology, 2000, 298, 303-312.	4.2	80
306	Ranking predicted protein structures with support vector regression. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1175-1182.	2.6	80

#	Article	IF	CITATIONS
307	CASD-NMR: critical assessment of automated structure determination by NMR. Nature Methods, 2009, 6, 625-626.	19.0	80
308	Improving the performance of rosetta using multiple sequence alignment information and global measures of hydrophobic core formation. Proteins: Structure, Function and Bioinformatics, 2001, 43, 1-11.	2.6	79
309	Structural inference of native and partially folded RNA by high-throughput contact mapping. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4144-4149.	7.1	79
310	Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Nucleic Acids Research, 2005, 33, 5861-5867.	14.5	78
311	Computational design of environmental sensors for the potent opioid fentanyl. ELife, 2017, 6, .	6.0	78
312	Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nature Communications, 2015, 6, 10005.	12.8	77
313	Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta. Bioinformatics, 2017, 33, 2765-2767.	4.1	77
314	A Refined Model of the Prototypical Salmonella SPI-1 T3SS Basal Body Reveals the Molecular Basis for Its Assembly. PLoS Pathogens, 2013, 9, e1003307.	4.7	76
315	Crystal Structure of the HSV-1 Fc Receptor Bound to Fc Reveals a Mechanism for Antibody Bipolar Bridging. PLoS Biology, 2006, 4, e148.	5.6	75
316	Heterologous Epitope-Scaffold Primeâ^¶Boosting Immuno-Focuses B Cell Responses to the HIV-1 gp41 2F5 Neutralization Determinant. PLoS ONE, 2011, 6, e16074.	2.5	75
317	Blind Testing of Routine, Fully Automated Determination of Protein Structures from NMR Data. Structure, 2012, 20, 227-236.	3.3	75
318	Computational Design of Enone-Binding Proteins with Catalytic Activity for the Morita–Baylis–Hillman Reaction. ACS Chemical Biology, 2013, 8, 749-757.	3.4	75
319	Deep learning and protein structure modeling. Nature Methods, 2022, 19, 13-14.	19.0	75
320	Computational design of a pH-sensitive IgG binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 675-680.	7.1	74
321	Accurate computer-based design of a new backbone conformation in the second turn of protein L. Journal of Molecular Biology, 2002, 315, 471-477.	4.2	73
322	Cryo‣M model validation using independent map reconstructions. Protein Science, 2013, 22, 865-868.	7.6	72
323	Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4017-25.	7.1	72
324	A General Computational Approach for Repeat Protein Design. Journal of Molecular Biology, 2015, 427, 563-575.	4.2	72

#	Article	IF	CITATIONS
325	Blind docking of pharmaceutically relevant compounds using RosettaLigand. Protein Science, 2009, 18, 1998-2002.	7.6	71
326	Recapitulation of Protein Family Divergence using Flexible Backbone Protein Design. Journal of Molecular Biology, 2005, 346, 631-644.	4.2	70
327	The dynamic disulphide relay of quiescin sulphydryl oxidase. Nature, 2012, 488, 414-418.	27.8	70
328	Simple yet functional phosphate-loop proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11943-E11950.	7.1	70
329	2.1 and 1.8 à Average CαRMSD Structure Predictions on Two Small Proteins, HP-36 and S15. Journal of the American Chemical Society, 2001, 123, 1040-1046.	13.7	69
330	Distributions of beta sheets in proteins with application to structure prediction. Proteins: Structure, Function and Bioinformatics, 2002, 48, 85-97.	2.6	69
331	Resolutionâ€adapted recombination of structural features significantly improves sampling in restraintâ€guided structure calculation. Proteins: Structure, Function and Bioinformatics, 2012, 80, 884-895.	2.6	69
332	Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers. Analytical and Bioanalytical Chemistry, 2016, 408, 1335-1346.	3.7	69
333	Conversion of monomeric protein L to an obligate dimer by computational protein design. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10687-10691.	7.1	68
334	Design of activated serine–containing catalytic triads with atomic-level accuracy. Nature Chemical Biology, 2014, 10, 386-391.	8.0	68
335	Intrinsic disorder drives N-terminal ubiquitination by Ube2w. Nature Chemical Biology, 2015, 11, 83-89.	8.0	68
336	Protein contact prediction using metagenome sequence data and residual neural networks. Bioinformatics, 2020, 36, 41-48.	4.1	68
337	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	12.4	68
338	A phage display system for studying the sequence determinants of protein folding. Protein Science, 1995, 4, 1108-1117.	7.6	67
339	Local sequence-structure correlations in proteins. Current Opinion in Biotechnology, 1996, 7, 417-421.	6.6	67
340	Expanding the Product Profile of a Microbial Alkane Biosynthetic Pathway. ACS Synthetic Biology, 2013, 2, 59-62.	3.8	67
341	Understanding protein hydrogen bond formation with kinetic H/D amide isotope effects. Nature Structural Biology, 2002, 9, 458-463.	9.7	66
342	Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. Journal of the American Chemical Society, 2011, 133, 6288-6298.	13.7	65

#	Article	IF	CITATIONS
343	Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures. Journal of the American Chemical Society, 2014, 136, 1893-1906.	13.7	65
344	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, 2016, 5, .	6.0	65
345	Direct evidence for a twoâ€state protein unfolding transition from hydrogenâ€deuterium exchange, mass spectrometry, and NMR. Protein Science, 1996, 5, 1060-1066.	7.6	64
346	Simplified proteins: minimalist solutions to the â€~protein folding problem'. Current Opinion in Structural Biology, 1998, 8, 80-85.	5.7	64
347	Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15346-15351.	7.1	64
348	A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys. Nucleic Acids Research, 2004, 32, 5147-5162.	14.5	64
349	Prediction and design of macromolecular structures and interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 459-463.	4.0	64
350	Computation and Functional Studies Provide a Model for the Structure of the Zinc Transporter hZIP4. Journal of Biological Chemistry, 2015, 290, 17796-17805.	3.4	63
351	Computational design of a red fluorophore ligase for site-specific protein labeling in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4551-9.	7.1	62
352	Protein homology model refinement by large-scale energy optimization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3054-3059.	7.1	62
353	An enumerative algorithm for de novo design of proteins with diverse pocket structures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22135-22145.	7.1	62
354	Conserved residue clustering and protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2003, 52, 225-235.	2.6	61
355	Structures of the B1 domain of protein L fromPeptostreptococcus magnuswith a tyrosine to tryptophan substitution. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 480-487.	2.5	60
356	The Common Structural Architecture of Shigella flexneri and Salmonella typhimurium Type Three Secretion Needles. PLoS Pathogens, 2013, 9, e1003245.	4.7	60
357	Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1268-1273.	7.1	60
358	The Effects of Mutations on Motions of Side-chains in Protein L Studied by 2H NMR Dynamics and Scalar Couplings. Journal of Molecular Biology, 2003, 329, 551-563.	4.2	59
359	De novo structure generation using chemical shifts for proteins with highâ€sequence identity but different folds. Protein Science, 2010, 19, 349-356.	7.6	59
360	Multi-input chemical control of protein dimerization for programming graded cellular responses. Nature Biotechnology, 2019, 37, 1209-1216.	17.5	59

#	Article	IF	CITATIONS
361	Residues participating in the protein folding nucleus do not exhibit preferential evolutionary conservation. Journal of Molecular Biology, 2002, 316, 225-233.	4.2	57
362	Conservation, Variability and the Modeling of Active Protein Kinases. PLoS ONE, 2007, 2, e982.	2.5	57
363	Improving NMR protein structure quality by Rosetta refinement: A molecular replacement study. Proteins: Structure, Function and Bioinformatics, 2009, 75, 147-167.	2.6	57
364	Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Engineering, Design and Selection, 2017, 30, 333-345.	2.1	57
365	Characterization of the free energy spectrum of peptostreptococcal protein L. Folding & Design, 1997, 2, 271-280.	4.5	56
366	Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nature Communications, 2017, 8, 2244.	12.8	56
367	Cryo-EM structure of a type IV secretion system. Nature, 2022, 607, 191-196.	27.8	56
368	Local interactions and the optimization of protein folding. , 1997, 29, 282-291.		55
369	The single helix in protein L is largely disrupted at the rate-limiting step in folding. Journal of Molecular Biology, 1998, 284, 807-815.	4.2	55
370	A model of anthrax toxin lethal factor bound to protective antigen. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16409-16414.	7.1	55
371	Ab Initio Modeling of the Herpesvirus VP26 Core Domain Assessed by CryoEM Density. PLoS Computational Biology, 2006, 2, e146.	3.2	54
372	Structural Analyses of Covalent Enzyme–Substrate Analog Complexes Reveal Strengths and Limitations of De Novo Enzyme Design. Journal of Molecular Biology, 2012, 415, 615-625.	4.2	54
373	Structure of the Ultra-High-Affinity Colicin E2 DNase–Im2 Complex. Journal of Molecular Biology, 2012, 417, 79-94.	4.2	54
374	High-throughput characterization of protein–protein interactions by reprogramming yeast mating. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12166-12171.	7.1	54
375	O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity. Nature Chemistry, 2021, 13, 441-450.	13.6	54
376	Influenza hemagglutinin: kinetic control of protein function. Structure, 1994, 2, 907-910.	3.3	53
377	Low free energy cost of very long loop insertions in proteins. Protein Science, 2003, 12, 197-206.	7.6	53
378	Improved beta-protein structure prediction by multilevel optimization of nonlocal strand pairings and local backbone conformation. Proteins: Structure, Function and Bioinformatics, 2006, 65, 922-929.	2.6	53

#	Article	IF	CITATIONS
379	Single-Site Mutations Induce 3D Domain Swapping in the B1 Domain of Protein L from Peptostreptococcus magnus. Structure, 2001, 9, 1017-1027.	3.3	52
380	Recapitulation and Design of Protein Binding Peptide Structures and Sequences. Journal of Molecular Biology, 2006, 357, 917-927.	4.2	52
381	Rational Design of Intercellular Adhesion Molecule-1 (ICAM-1) Variants for Antagonizing Integrin Lymphocyte Function-associated Antigen-1-dependent Adhesion. Journal of Biological Chemistry, 2006, 281, 5042-5049.	3.4	52
382	Cryo-EM Structure of a Group II Chaperonin in the Prehydrolysis ATP-Bound State Leading to Lid Closure. Structure, 2011, 19, 633-639.	3.3	52
383	De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10852-10857.	7.1	52
384	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	4.7	52
385	Force Field Optimization Guided by Small Molecule Crystal Lattice Data Enables Consistent Sub-Angstrom Protein–Ligand Docking. Journal of Chemical Theory and Computation, 2021, 17, 2000-2010.	5.3	52
386	Prediction of structures of multidomain proteins from structures of the individual domains. Protein Science, 2006, 16, 165-175.	7.6	51
387	Assessment of predictions submitted for the CASP7 domain prediction category. Proteins: Structure, Function and Bioinformatics, 2007, 69, 137-151.	2.6	51
388	Evaluation of Models of Electrostatic Interactions in Proteins. Journal of Physical Chemistry B, 2003, 107, 2075-2090.	2.6	50
389	Restricted sidechain plasticity in the structures of native proteins and complexes. Protein Science, 2011, 20, 753-757.	7.6	50
390	Electron Density Redistribution Accounts for Half the Cooperativity of \hat{I}_{\pm} Helix Formation. Journal of Physical Chemistry B, 2006, 110, 4503-4505.	2.6	49
391	A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathogens, 2016, 12, e1005409.	4.7	49
392	CSAR Benchmark Exercise 2013: Evaluation of Results from a Combined Computational Protein Design, Docking, and Scoring/Ranking Challenge. Journal of Chemical Information and Modeling, 2016, 56, 1022-1031.	5.4	49
393	Automatic structure prediction of oligomeric assemblies using Robetta in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 283-291.	2.6	49
394	Circularization changes the folding transition state of the src SH3 domain11Edited by C. R. Matthews. Journal of Molecular Biology, 2001, 306, 555-563.	4.2	48
395	Superfamily Assignments for the Yeast Proteome through Integration of Structure Prediction with the Gene Ontology. PLoS Biology, 2007, 5, e76.	5.6	48
396	WeFold: A coopetition for protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1850-1868.	2.6	48

#	Article	IF	CITATIONS
397	Multiplex pairwise assembly of array-derived DNA oligonucleotides. Nucleic Acids Research, 2016, 44, e43-e43.	14.5	48
398	Computational design of closely related proteins that adopt two well-defined but structurally divergent folds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7208-7215.	7.1	48
399	Design of multi-scale protein complexes by hierarchical building block fusion. Nature Communications, 2021, 12, 2294.	12.8	48
400	Computation of Conformational Coupling in Allosteric Proteins. PLoS Computational Biology, 2009, 5, e1000484.	3.2	47
401	Accurate Automated Protein NMR Structure Determination Using Unassigned NOESY Data. Journal of the American Chemical Society, 2010, 132, 202-207.	13.7	47
402	Structure of the BamC Two-Domain Protein Obtained by Rosetta with a Limited NMR Data Set. Journal of Molecular Biology, 2011, 411, 83-95.	4.2	47
403	Determining crystal structures through crowdsourcing and coursework. Nature Communications, 2016, 7, 12549.	12.8	47
404	Protein structure prediction for the male-specific region of the human Y chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2305-2310.	7.1	46
405	Strand-loop-strand motifs: Prediction of hairpins and diverging turns in proteins. Proteins: Structure, Function and Bioinformatics, 2003, 54, 282-288.	2.6	45
406	Crystal structures and increased stabilization of the protein G variants with switched folding pathways NuG1 and NuG2. Protein Science, 2009, 11, 2924-2931.	7.6	45
407	Structureâ€guided forcefield optimization. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1898-1909.	2.6	45
408	Analysis of Anisotropic Side-chain Packing in Proteins and Application to High-resolution Structure Prediction. Journal of Molecular Biology, 2004, 342, 651-664.	4.2	44
409	The structure, dynamics, and energetics of protein adsorption—lessons learned from adsorption of statherin to hydroxyapatite. Magnetic Resonance in Chemistry, 2007, 45, S32-S47.	1.9	44
410	Profile-profile comparisons by COMPASS predict intricate homologies between protein families. Protein Science, 2009, 12, 2262-2272.	7.6	44
411	Prediction of structures of zincâ€binding proteins through explicit modeling of metal coordination geometry. Protein Science, 2010, 19, 494-506.	7.6	44
412	Evaluation and Optimization of Discrete State Models of Protein Folding. Journal of Physical Chemistry B, 2012, 116, 11405-11413.	2.6	44
413	Post-translational modification of the N-terminal His tag interferes with the crystallization of the wild-type and mutant SH3 domains from chicken src tyrosine kinase. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 759-762.	2.5	43
414	The Modular Structure of the Inner-Membrane Ring Component PrgK Facilitates Assembly of the Type III Secretion System Basal Body. Structure, 2015, 23, 161-172.	3.3	43

#	Article	IF	CITATIONS
415	Discovery and engineering of enhanced SUMO protease enzymes. Journal of Biological Chemistry, 2018, 293, 13224-13233.	3.4	43
416	Prediction and structural characterization of an independently folding substructure in the src SH3 domain. Journal of Molecular Biology, 1998, 283, 293-300.	4.2	42
417	Assessment of the optimization of affinity and specificity at protein–DNA interfaces. Nucleic Acids Research, 2009, 37, e73-e73.	14.5	42
418	Incorporation of evolutionary information into Rosetta comparative modeling. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2380-2388.	2.6	42
419	The dual role of fragments in fragmentâ€assembly methods for de novo protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2012, 80, 490-504.	2.6	42
420	Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro. Archives of Toxicology, 2016, 90, 2711-2724.	4.2	42
421	Experimental and Computational Analyses of the Energetic Basis for Dual Recognition of Immunity Proteins by Colicin Endonucleases. Journal of Molecular Biology, 2008, 379, 745-759.	4.2	41
422	Hotspot-Centric De Novo Design of Protein Binders. Journal of Molecular Biology, 2011, 413, 1047-1062.	4.2	41
423	Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15012-15017.	7.1	41
424	Highâ€accuracy refinement using Rosetta in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1276-1282.	2.6	41
425	Computationally designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
426	Comparison of Quantum Mechanics and Molecular Mechanics Dimerization Energy Landscapes for Pairs of Ring-Containing Amino Acids in Proteins. Journal of Physical Chemistry B, 2004, 108, 8489-8496.	2.6	40
427	RosettaHoles2: A volumetric packing measure for protein structure refinement and validation. Protein Science, 2010, 19, 1991-1995.	7.6	40
428	Modular repeat protein sculpting using rigid helical junctions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8870-8875.	7.1	40
429	Protein tertiary structure prediction and refinement using deep learning and Rosetta in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1722-1733.	2.6	40
430	Metastable states and folding free energy barriers. Nature Structural Biology, 1998, 5, 1021-1024.	9.7	39
431	An α-Helical Burst in the src SH3 Folding Pathway. Biochemistry, 2007, 46, 5072-5082.	2.5	39
432	Mechanistic Analysis of an Engineered Enzyme that Catalyzes the Formose Reaction. ChemBioChem, 2015, 16, 1950-1954.	2.6	39

#	Article	IF	CITATIONS
433	First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10125-10130.	7.1	39
434	Applications of contact predictions to structural biology. IUCrJ, 2017, 4, 291-300.	2.2	39
435	De Novo Carborane-Containing Macrocyclic Peptides Targeting Human Epidermal Growth Factor Receptor. Journal of the American Chemical Society, 2019, 141, 19193-19197.	13.7	39
436	Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. Npj Vaccines, 2020, 5, 72.	6.0	39
437	Two-Component Sensor RhpS Promotes Induction of Pseudomonas syringae Type III Secretion System by Repressing Negative Regulator RhpR. Molecular Plant-Microbe Interactions, 2007, 20, 223-234.	2.6	38
438	Analysis of social gameplay macros in the Foldit cookbook. , 2011, , .		38
439	Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker. Journal of Biomolecular NMR, 2013, 57, 117-127.	2.8	38
440	Computational Design of Novel Protein Binders and Experimental Affinity Maturation. Methods in Enzymology, 2013, 523, 1-19.	1.0	38
441	Designing Two-Dimensional Protein Arrays through Fusion of Multimers and Interface Mutations. Nano Letters, 2015, 15, 5235-5239.	9.1	38
442	Structural Genomics of Pathogenic Protozoa: an Overview. Methods in Molecular Biology, 2008, 426, 497-513.	0.9	38
443	Interactions of the Transmembrane Polymeric Rings of the Salmonella enterica Serovar Typhimurium Type III Secretion System. MBio, 2010, 1, .	4.1	37
444	Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. Journal of the American Chemical Society, 2011, 133, 10974-10982.	13.7	37
445	Accurate protein structure modeling using sparse NMR data and homologous structure information. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9875-9880.	7.1	37
446	Self-Assembling 2D Arrays with <i>de Novo</i> Protein Building Blocks. Journal of the American Chemical Society, 2019, 141, 8891-8895.	13.7	37
447	Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites. Nature Communications, 2021, 12, 3384.	12.8	37
448	Comprehensive computational design of mCrel homing endonuclease cleavage specificity for genome engineering. Nucleic Acids Research, 2011, 39, 4330-4339.	14.5	36
449	Trapping a transition state in a computationally designed protein bottle. Science, 2015, 347, 863-867.	12.6	36
450	Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design. Journal of Chemical Theory and Computation, 2018, 14, 2751-2760.	5.3	36

#	Article	IF	CITATIONS
451	Receptor subtype discrimination using extensive shape complementary designed interfaces. Nature Structural and Molecular Biology, 2019, 26, 407-414.	8.2	36
452	Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.	11.0	36
453	Reconfigurable asymmetric protein assemblies through implicit negative design. Science, 2022, 375, eabj7662.	12.6	36
454	Threeâ€dimensional structures and contexts associated with recurrent amino acid sequence patterns. Protein Science, 1997, 6, 1587-1590.	7.6	35
455	Rationally Designed Integrin \hat{l}^2 3 Mutants Stabilized in the High Affinity Conformation. Journal of Biological Chemistry, 2009, 284, 3917-3924.	3.4	35
456	Efficient sampling of protein conformational space using fast loop building and batch minimization on highly parallel computers. Journal of Computational Chemistry, 2012, 33, 2483-2491.	3.3	35
457	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
458	A General Expression for Bimolecular Association Rates with Orientational Constraints. Journal of Physical Chemistry B, 2002, 106, 12079-12083.	2.6	34
459	Sampling and energy evaluation challenges in ligand binding protein design. Protein Science, 2017, 26, 2426-2437.	7.6	34
460	Engineering an efficient and enantioselective enzyme for the Morita–Baylis–Hillman reaction. Nature Chemistry, 2022, 14, 313-320.	13.6	34
461	Engineering domain fusion chimeras from I-Onul family LAGLIDADG homing endonucleases. Nucleic Acids Research, 2012, 40, 7985-8000.	14.5	33
462	Protein folding, structure prediction and design. Biochemical Society Transactions, 2014, 42, 225-229.	3.4	33
463	Exploration of Alternate Catalytic Mechanisms and Optimization Strategies for Retroaldolase Design. Journal of Molecular Biology, 2014, 426, 256-271.	4.2	33
464	Intracellular Delivery System for Antibody–Peptide Drug Conjugates. Molecular Therapy, 2015, 23, 907-917.	8.2	33
465	A hybrid NMR/SAXSâ€based approach for discriminating oligomeric protein interfaces using <scp>R</scp> osetta. Proteins: Structure, Function and Bioinformatics, 2015, 83, 309-317.	2.6	33
466	Computational design of mechanically coupled axle-rotor protein assemblies. Science, 2022, 376, 383-390.	12.6	33
467	Rescue of Degradation-Prone Mutants of the FK506-Rapamycin Binding (FRB) Protein with Chemical Ligands. ChemBioChem, 2007, 8, 1162-1169.	2.6	32
468	Prospects forde novophasing withde novoprotein models. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 169-175.	2.5	32

#	Article	IF	CITATIONS
469	Modulation of Integrin Activation by an Entropic Spring in the β-Knee. Journal of Biological Chemistry, 2010, 285, 32954-32966.	3.4	32
470	Isotope Signatures Allow Identification of Chemically Cross-Linked Peptides by Mass Spectrometry: A Novel Method to Determine Interresidue Distances in Protein Structures through Cross-Linking. Journal of Proteome Research, 2010, 9, 3583-3589.	3.7	32
471	Complementary Chimeric Isoforms Reveal Dscam1 Binding Specificity InÂVivo. Neuron, 2012, 74, 261-268.	8.1	32
472	Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4449-4454.	7.1	32
473	Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Protein Science, 2020, 29, 919-929.	7.6	32
474	Functional Inferences from Blind ab Initio Protein Structure Predictions. Journal of Structural Biology, 2001, 134, 186-190.	2.8	31
475	Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Research, 2014, 42, 2564-2576.	14.5	31
476	High-Resolution Modeling of Transmembrane Helical Protein Structures from Distant Homologues. PLoS Computational Biology, 2014, 10, e1003636.	3.2	31
477	Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30362-30369.	7.1	31
478	Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. Nature Communications, 2021, 12, 856.	12.8	31
479	Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Protein Science, 2015, 24, 1695-1701.	7.6	30
480	Mis-translation of a Computationally Designed Protein Yields an Exceptionally Stable Homodimer: Implications for Protein Engineering and Evolution. Journal of Molecular Biology, 2006, 362, 1004-1024.	4.2	29
481	APOBEC2 Is a Monomer in Solution: Implications for APOBEC3G Models. Biochemistry, 2012, 51, 2008-2017.	2.5	28
482	A computational method for design of connected catalytic networks in proteins. Protein Science, 2019, 28, 2036-2041.	7.6	28
483	Functional expression and characterization of the envelope glycoprotein E1E2 heterodimer of hepatitis C virus. PLoS Pathogens, 2019, 15, e1007759.	4.7	28
484	Computational design of a synthetic PD-1 agonist. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
485	Motifâ€directed flexible backbone design of functional interactions. Protein Science, 2009, 18, 1293-1305.	7.6	27
486	Crystal structure of XMRV protease differs from the structures of other retropepsins. Nature Structural and Molecular Biology, 2011, 18, 227-229.	8.2	27

#	Article	IF	CITATIONS
487	Better together: Elements of successful scientific software development in a distributed collaborative community. PLoS Computational Biology, 2020, 16, e1007507.	3.2	27
488	A ``loop entropy reduction'' phage-display selection for folded amino acid sequences. Protein Science, 2001, 10, 129-134.	7.6	26
489	Searching for folded proteins in vitro and in silico. FEBS Journal, 2004, 271, 1615-1622.	0.2	26
490	RosettaDock in CAPRI rounds 6–12. Proteins: Structure, Function and Bioinformatics, 2007, 69, 758-763.	2.6	26
491	<scp>CASP</scp> 11 refinement experiments with <scp>ROSETTA</scp> . Proteins: Structure, Function and Bioinformatics, 2016, 84, 314-322.	2.6	26
492	Networks of electrostatic and hydrophobic interactions modulate the complex folding free energy surface of a designed βα protein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6806-6811.	7.1	26
493	Mutations Designed to Destabilize the Receptor-Bound Conformation Increase MICA-NKG2D Association Rate and Affinity. Journal of Biological Chemistry, 2007, 282, 30658-30666.	3.4	25
494	Modeling Disordered Regions in Proteins Using Rosetta. PLoS ONE, 2011, 6, e22060.	2.5	25
495	Improving 3D structure prediction from chemical shift data. Journal of Biomolecular NMR, 2013, 57, 27-35.	2.8	25
496	Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities. Biochemistry, 2016, 55, 6811-6820.	2.5	25
497	Extreme stability in de novo-designed repeat arrays is determined by unusually stable short-range interactions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7539-7544.	7.1	25
498	Engineering Biomolecular Selfâ€Assembly at Solid–Liquid Interfaces. Advanced Materials, 2021, 33, e1905784.	21.0	25
499	Generation of ordered protein assemblies using rigid three-body fusion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
500	Protection of the Furin Cleavage Site in Low-Toxicity Immunotoxins Based on Pseudomonas Exotoxin A. Toxins, 2016, 8, 217.	3.4	24
501	Blind predictions of local protein structure in CASP2 targets using the I-sites library. Proteins: Structure, Function and Bioinformatics, 1997, 29, 167-171.	2.6	23
502	The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy. Journal of Magnetic Resonance, 2005, 173, 310-316.	2.1	23
503	Active Site Plasticity of a Computationally Designed Retroâ€Aldolase Enzyme. ChemCatChem, 2014, 6, 1043-1050.	3.7	23
504	Automating human intuition for protein design. Proteins: Structure, Function and Bioinformatics, 2014, 82, 858-866.	2.6	23

#	Article	IF	CITATIONS
505	Thermodynamically coupled biosensors for detecting neutralizing antibodies against SARS-CoV-2 variants. Nature Biotechnology, 2022, 40, 1336-1340.	17.5	23
506	Robustness of protein folding kinetics to surface hydrophobic substitutions. Protein Science, 1999, 8, 2734-2741.	7.6	22
507	High-resolution structure of a retroviral protease folded as a monomer. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 907-914.	2.5	22
508	Protein Nanocontainers from Nonviral Origin: Testing the Mechanics of Artificial and Natural Protein Cages by AFM. Journal of Physical Chemistry B, 2016, 120, 5945-5952.	2.6	22
509	PRISM: topologically constrained phased refinement for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 1993, 49, 429-439.	2.5	21
510	Efficient minimization of angle-dependent potentials for polypeptides in internal coordinates. Proteins: Structure, Function and Bioinformatics, 2003, 53, 262-272.	2.6	21
511	Contributions of Amino Acid Side Chains to the Kinetics and Thermodynamics of the Bivalent Binding of Protein L to Ig lº Light Chainâ€. Biochemistry, 2004, 43, 2445-2457.	2.5	21
512	A Putative Src Homology 3 Domain Binding Motif but Not the C-terminal Dystrophin WW Domain Binding Motif Is Required for Dystroglycan Function in Cellular Polarity in Drosophila. Journal of Biological Chemistry, 2007, 282, 15159-15169.	3.4	21
513	A New Twist in TCR Diversity Revealed by a Forbidden αβ TCR. Journal of Molecular Biology, 2008, 375, 1306-1319.	4.2	21
514	A computationally engineered RAS rheostat reveals RAS–ERK signaling dynamics. Nature Chemical Biology, 2017, 13, 119-126.	8.0	21
515	Engineered Biosensors from Dimeric Ligand-Binding Domains. ACS Synthetic Biology, 2018, 7, 2457-2467.	3.8	21
516	Sequence–Structure–Binding Relationships Reveal Adhesion Behavior of the Car9 Solid-Binding Peptide: An Integrated Experimental and Simulation Study. Journal of the American Chemical Society, 2020, 142, 2355-2363.	13.7	21
517	Super-enhancer-based identification of a BATF3/IL-2Râ~'module reveals vulnerabilities in anaplastic large cell lymphoma. Nature Communications, 2021, 12, 5577.	12.8	21
518	Uniqueness and the ab initio phase problem in macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 1993, 49, 186-192.	2.5	20
519	Rosetta in CAPRI rounds 13–19. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3212-3218.	2.6	20
520	Improved Modeling of Side-Chain–Base Interactions and Plasticity in Protein–DNA Interface Design. Journal of Molecular Biology, 2012, 419, 255-274.	4.2	20
521	Improving the Efficiency of Ligand-Binding Protein Design with Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2019, 15, 5703-5715.	5.3	20
522	Chapter 7 Reconstitution of Protein Transport Using Broken Yeast Spheroplasts. Methods in Cell Biology, 1989, 31, 127-141.	1.1	19

#	Article	IF	CITATIONS
523	High-Resolution Structural Validation of the Computational Redesign of Human U1A Protein. Structure, 2006, 14, 847-856.	3.3	19
524	Comparative Analysis of Mutant Tyrosine Kinase Chemical Rescue. Biochemistry, 2009, 48, 3378-3386.	2.5	19
525	Computationally Designed Armadillo Repeat Proteins for Modular Peptide Recognition. Journal of Molecular Biology, 2016, 428, 4467-4489.	4.2	19
526	An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports, 2018, 8, 9939.	3.3	19
527	Disentangling Rotational Dynamics and Ordering Transitions in a System of Self-Organizing Protein Nanorods <i>via</i> Rotationally Invariant Latent Representations. ACS Nano, 2021, 15, 6471-6480.	14.6	19
528	Contributions of solvent–solvent hydrogen bonding and van der Waals interactions to the attraction between methane molecules in water. Biophysical Chemistry, 1998, 71, 199-204.	2.8	18
529	Structural and kinetic characterization of the simplified SH3 domain FP1. Protein Science, 2003, 12, 776-783.	7.6	18
530	Structure of Lmaj006129AAA, a hypothetical protein fromLeishmania major. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 175-179.	0.7	18
531	Remodeling a β-peptide bundle. Chemical Science, 2013, 4, 319-324.	7.4	18
532	<i>De Novo</i> -Designed Enzymes as Small-Molecule-Regulated Fluorescence Imaging Tags and Fluorescent Reporters. Journal of the American Chemical Society, 2014, 136, 13102-13105.	13.7	18
533	De novo design of a homo-trimeric amantadine-binding protein. ELife, 2019, 8, .	6.0	18
534	Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs. Briefings in Bioinformatics, 2022, 23, .	6.5	18
535	Coordinateâ€space formulation of polymer lattice cluster theory. Journal of Chemical Physics, 1993, 98, 9951-9962.	3.0	17
536	Structure similarity measure with penalty for close non-equivalent residues. Bioinformatics, 2009, 25, 1259-1263.	4.1	17
537	Structure of a putative BenFâ€like porin from <i>Pseudomonas fluorescens</i> Pfâ€5 at 2.6 à resolution. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3056-3062.	2.6	17
538	Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin. Physical Chemistry Chemical Physics, 2013, 15, 19608.	2.8	17
539	Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein. Analytical Chemistry, 2017, 89, 6608-6615.	6.5	17
540	Quantifying the Dynamics of Protein Self-Organization Using Deep Learning Analysis of Atomic Force Microscopy Data. Nano Letters, 2021, 21, 158-165.	9.1	17

#	Article	IF	CITATIONS
541	Transferrin receptor targeting by de novo sheet extension. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
542	Large-scale design and refinement of stable proteins using sequence-only models. PLoS ONE, 2022, 17, e0265020.	2.5	17
543	Comparison of designed and randomly generated catalysts for simple chemical reactions. Protein Science, 2012, 21, 1388-1395.	7.6	16
544	Amyloid β peptide cleavage by kallikrein 7 attenuates fibril growth and rescues neurons from Aβ-mediated toxicity in vitro. Biological Chemistry, 2014, 395, 109-118.	2.5	16
545	The Origin of Consistent Protein Structure Refinement from Structural Averaging. Structure, 2015, 23, 1123-1128.	3.3	16
546	Structure prediction using sparse simulated <scp>NOE</scp> restraints with Rosetta in <scp>CASP</scp> 11. Proteins: Structure, Function and Bioinformatics, 2016, 84, 181-188.	2.6	16
547	Structurally Mapping Endogenous Heme in the CcmCDE Membrane Complex for Cytochrome c Biogenesis. Journal of Molecular Biology, 2018, 430, 1065-1080.	4.2	16
548	Computational design of mixed chirality peptide macrocycles with internal symmetry. Protein Science, 2020, 29, 2433-2445.	7.6	16
549	Role of backbone strain in de novo design of complex α/β protein structures. Nature Communications, 2021, 12, 3921.	12.8	16
550	Protein oligomer modeling guided by predicted interchain contacts in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1824-1833.	2.6	16
551	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nature Communications, 2021, 12, 6947.	12.8	16
552	Structural Transitions in the Protein L Denatured State Ensemble. Biochemistry, 1999, 38, 15927-15935.	2.5	15
553	Ab Initio Methods. Methods of Biochemical Analysis, 2005, 44, 547-557.	0.2	15
554	Feature space resampling for protein conformational search. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1583-1593.	2.6	15
555	Mining Endonuclease Cleavage Determinants in Genomic Sequence Data. Journal of Biological Chemistry, 2011, 286, 32617-32627.	3.4	15
556	Precise assembly of complex beta sheet topologies from de novo designed building blocks. ELife, 2015, 4, .	6.0	15
557	Templateâ€based modeling by ClusPro in CASP13 and the potential for using coâ€evolutionary information in docking. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1241-1248.	2.6	15
558	Protein sequence optimization with a pairwise decomposable penalty for buried unsatisfied hydrogen bonds. PLoS Computational Biology, 2021, 17, e1008061.	3.2	15

#	Article	IF	CITATIONS
559	The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. Journal of Molecular Biology, 2021, 433, 167153.	4.2	15
560	Computational design of orthogonal nucleoside kinases. Chemical Communications, 2010, 46, 8803.	4.1	14
561	Cytosolic expression, solution structures, and molecular dynamics simulation of genetically encodable disulfideâ€rich <i>de novo</i> designed peptides. Protein Science, 2018, 27, 1611-1623.	7.6	14
562	An integrated device for the rapid and sensitive detection of the influenza hemagglutinin. Lab on A Chip, 2019, 19, 885-896.	6.0	14
563	De novo design of tyrosine and serine kinase-driven protein switches. Nature Structural and Molecular Biology, 2021, 28, 762-770.	8.2	14
564	Interpreting neural networks for biological sequences by learning stochastic masks. Nature Machine Intelligence, 2022, 4, 41-54.	16.0	14
565	Deciphering a novel thioredoxin-like fold family. Proteins: Structure, Function and Bioinformatics, 2003, 52, 323-331.	2.6	13
566	Insights from the crystal structure of the sixth BRCT domain of topoisomerase Ilβ binding protein 1. Protein Science, 2010, 19, 162-167.	7.6	12
567	Fully automated high-quality NMR structure determination of small 2H-enriched proteins. Journal of Structural and Functional Genomics, 2010, 11, 223-232.	1.2	12
568	Increasing Public Involvement in Structural Biology. Structure, 2013, 21, 1482-1484.	3.3	12
569	Two common structural motifs for TCR recognition by staphylococcal enterotoxins. Scientific Reports, 2016, 6, 25796.	3.3	12
570	Redesigning the Specificity of Protein–DNA Interactions with Rosetta. Methods in Molecular Biology, 2014, 1123, 265-282.	0.9	12
571	Fâ€domain valency determines outcome of signaling through the angiopoietin pathway. EMBO Reports, 2021, 22, e53471.	4.5	12
572	Engineering and design. Current Opinion in Structural Biology, 1999, 9, 485-486.	5.7	11
573	Design and Characterization of Stabilized Derivatives of Human CD4D12 and CD4D1. Biochemistry, 2011, 50, 7891-7900.	2.5	11
574	Cyclic oligomer design with de novo αβâ€proteins. Protein Science, 2017, 26, 2187-2194.	7.6	11
575	Improved Freeâ€Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction. ChemPhysChem, 2018, 19, 19-23.	2.1	11
576	Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks. Journal of Structural Biology, 2018, 201, 100-107.	2.8	11

#	Article	IF	CITATIONS
577	Isolating Conformers to Assess Dynamics of Peptidic Catalysts Using Computationally Designed Macrocyclic Peptides. ACS Catalysis, 2021, 11, 4395-4400.	11.2	11
578	Stapled β-Hairpins Featuring 4-Mercaptoproline. Journal of the American Chemical Society, 2021, 143, 15039-15044.	13.7	11
579	Improvement of a Potential Anthrax Therapeutic by Computational Protein Design. Journal of Biological Chemistry, 2011, 286, 32586-32592.	3.4	10
580	Massively parallel determination and modeling of endonuclease substrate specificity. Nucleic Acids Research, 2014, 42, 13839-13852.	14.5	10
581	Structures and disulfide crossâ€linking of de novo designed therapeutic miniâ€proteins. FEBS Journal, 2018, 285, 1783-1785.	4.7	10
582	Building de novo cryo-electron microscopy structures collaboratively with citizen scientists. PLoS Biology, 2019, 17, e3000472.	5.6	10
583	Ion-dependent protein–surface interactions from intrinsic solvent response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
584	Deep learning enables the atomic structure determination of the Fanconi Anemia core complex from cryoEM. IUCrJ, 2020, 7, 881-892.	2.2	10
585	Medical Subinternship: Student Experience on a Resident Uncovered Hospitalist Service. Teaching and Learning in Medicine, 2008, 20, 18-21.	2.1	9
586	A covariation analysis reveals elements of selectivity in quorum sensing systems. ELife, 2021, 10, .	6.0	9
587	Improved recognition of nativeâ€like protein structures using a combination of sequenceâ€dependent and sequenceâ€independent features of proteins. Proteins: Structure, Function and Bioinformatics, 1999, 34, 82-95.	2.6	9
588	Natural and Designed Proteins Inspired by Extremotolerant Organisms Can Form Condensates and Attenuate Apoptosis in Human Cells. ACS Synthetic Biology, 2022, 11, 1292-1302.	3.8	9
589	De novo design and directed folding of disulfide-bridged peptide heterodimers. Nature Communications, 2022, 13, 1539.	12.8	9
590	PRISM: application to the solution of two protein structures. Acta Crystallographica Section D: Biological Crystallography, 1993, 49, 440-448.	2.5	8
591	Detection of Protein Coding Sequences Using a Mixture Model for Local Protein Amino Acid Sequence. Journal of Computational Biology, 2000, 7, 317-327.	1.6	8
592	Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus. Nucleic Acids Research, 2014, 42, 6463-6475.	14.5	8
593	Biogenesis of Influenza A Virus Hemagglutinin Cross-Protective Stem Epitopes. PLoS Pathogens, 2014, 10, e1004204.	4.7	8
594	Designed protein aggregates entrapping carbon nanotubes for bioelectrochemical oxygen reduction. Biotechnology and Bioengineering, 2016, 113, 2321-2327.	3.3	8

#	Article	IF	CITATIONS
595	Introduction of a polar core into the de novo designed protein <scp>T</scp> op7. Protein Science, 2016, 25, 1299-1307.	7.6	7
596	Multimerization of an Alcohol Dehydrogenase by Fusion to a Designed Self-Assembling Protein Results in Enhanced Bioelectrocatalytic Operational Stability. ACS Applied Materials & Interfaces, 2019, 11, 20022-20028.	8.0	7
597	Unintended specificity of an engineered ligand-binding protein facilitated by unpredicted plasticity of the protein fold. Protein Engineering, Design and Selection, 2018, 31, 375-387.	2.1	6
598	Rotational dynamics and transition mechanisms of surface-adsorbed proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2020242119.	7.1	6
599	Rapid and Sensitive Detection of Antigen from SARS-CoV-2 Variants of Concern by a Multivalent Minibinder-Functionalized Nanomechanical Sensor. Analytical Chemistry, 2022, 94, 8105-8109.	6.5	6
600	Computational Protein Design for Synthetic Biology. , 2013, , 101-122.		5
601	Crystallization and preliminary X-ray diffraction studies of mutants of B1 IgG-binding domain of protein L fromPeptostreptococcus magnus. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 506-508.	2.5	4
602	Conditional Recruitment to a DNA-Bound CRISPR–Cas Complex Using a Colocalization-Dependent Protein Switch. ACS Synthetic Biology, 2020, 9, 2316-2323.	3.8	4
603	Alignment of Au nanorods along <i>de novo</i> designed protein nanofibers studied with automated image analysis. Soft Matter, 2021, 17, 6109-6115.	2.7	4
604	COVID-19 Rehabilitation With Herbal Medicine and Cardiorespiratory Exercise: Protocol for a Clinical Study. JMIR Research Protocols, 2021, 10, e25556.	1.0	4
605	Competitive Displacement of <i>De Novo</i> Designed HeteroDimers Can Reversibly Control Protein–Protein Interactions and Implement Feedback in Synthetic Circuits. , 2022, 1, 91-100.		4
606	Cloning, expression, purification, crystallization and preliminary X-ray diffraction data of thePyrococcus horikoshiiRadA intein. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 623-626.	0.7	3
607	Ab initio protein structure prediction of CASP III targets using ROSETTA. , 1999, 37, 171.		3
608	On the role of a conserved, potentially helix-breaking residue in the tRNA-binding α-helix of archaeal CCA-adding enzymes. Rna, 2008, 14, 1284-1289.	3.5	2
609	Patient and Physician Perceptions of Examination Room versus Traditional Presentations in a Resident Medicine Clinic. Journal of Life Sciences, 2009, 1, 1-7.	0.1	2
610	Self-assembly–based posttranslational protein oscillators. Science Advances, 2020, 6, .	10.3	2
611	Importance of Substrate–Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. Langmuir, 2021, 37, 9111-9119.	3.5	2
612	11th German Conference on Chemoinformatics (GCC 2015). Journal of Cheminformatics, 2016, 8, 18.	6.1	1

DAVID BAKER

0

#	Article	IF	CITATIONS
613	Parallelized identification of on- and off-target protein interactions. Molecular Systems Design and Engineering, 2020, 5, 349-357.	3.4	1
614	Generation of Potent and Stable GLP-1 Analogues Via "Serine Ligationâ€: ACS Chemical Biology, 2022, 17, 804-809.	3.4	1
615	Treatment of experimental anthrax with pegylated circularly permuted capsule depolymerase. Science Translational Medicine, 2021, 13, eabh1682.	12.4	1
616	Progress inAB InitioProtein Structure Prediction. Scientific World Journal, The, 2002, 2, 31-31.	2.1	0
617	P05-09. 4e10 epitope-scaffolds mimic the antibody-bound epitope conformation and block neutralization by sera from rare HIV+ individuals. Retrovirology, 2009, 6, P85.	2.0	0

3P098 Computational de novo design of "ideal" protein structures (Protein: Engineering, The 48th) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

619	Complementary Chimeric Isoforms Reveal Dscam1 Binding Specificity InÂVivo. Neuron, 2012, 76, 668.	8.1	0
620	Development of a paper-based diagnostic for influenza detection. , 2014, , .		0
621	Computationally designed protein activation. National Science Review, 2019, 6, 609-610.	9.5	0
622	Ab Initio Modeling of the Herpesvirus VP26 Core Domain Assessed by CryoEM Density. PLoS Computational Biology, 2005, preprint, e146.	3.2	0
623	Varying the Directionality of Protein Catalysts for Aldol and Retroâ€aldol Reactions. ChemBioChem, 2021, , .	2.6	0
624	Interpreting Potts and Transformer Protein Models Through the Lens of Simplified Attention. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2022, 27, 34-45.	0.7	0
625	Title is missing!. , 2020, 16, e1008665.		0
626	Title is missing!. , 2020, 16, e1008665.		0
627	Title is missing!. , 2020, 16, e1008665.		0

628 Title is missing!. , 2020, 16, e1008665.