Tsuyoshi Iizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387535/publications.pdf

Version: 2024-02-01

68 papers

3,621 citations

147801 31 h-index 60 g-index

70 all docs

70 docs citations

70 times ranked 2891 citing authors

#	Article	IF	Citations
1	Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology, 2005, 220, 121-137.	3.3	440
2	U–Pb chronology of the Solar System's oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 2010, 300, 343-350.	4.4	270
3	4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology, 2006, 34, 245.	4.4	171
4	Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contributions To Mineralogy and Petrology, 2009, 158, 739-755.	3.1	167
5	Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica Et Cosmochimica Acta, 2010, 74, 2450-2472.	3.9	159
6	U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology, 2005, 33, 485.	4.4	152
7	Simultaneous determinations of U-Pb age and REE abundances for zircons using ArF excimer laser ablation-ICPMS. Geochemical Journal, 2004, 38, 229-241.	1.0	140
8	Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2013, 107, 96-120.	3.9	136
9	Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history. Precambrian Research, 2007, 153, 179-208.	2.7	121
10	Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu–Hf isotope analysis of zircon. Chemical Geology, 2009, 259, 230-239.	3.3	117
11	Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science, 2023, 379, .	12.6	97
12	The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth and Planetary Science Letters, 2011, 303, 240-250.	4.4	87
13	Recycled crustal zircons from podiform chromitites in the <scp>L</scp> uobusa ophiolite, southern <scp>T</scp> ibet. Island Arc, 2013, 22, 89-103.	1.1	82
14	Reduction of mercury background on ICP-mass spectrometry for in situ U–Pb age determinations of zircon samples. Journal of Analytical Atomic Spectrometry, 2005, 20, 696.	3.0	78
15	What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 2017, 274-275, 304-327.	1.4	78
16	Meteorite zircon constraints on the bulk Luâ^'Hf isotope composition and early differentiation of the Earth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5331-5336.	7.1	77
17	Tectonic boundary between the Sanbagawa belt and the Shimanto belt in central Shikoku, Japan. Journal of the Geological Society of Japan, 2007, 113, 171-183.	0.6	68
18	Geochemistry, U-Pb dating, and Lu-Hf isotopes of zircon and monazite of porphyritic granites within the Jiao-Liao-Ji orogenic belt: Implications for petrogenesis and tectonic setting. Precambrian Research, 2017, 300, 78-106.	2.7	67

#	Article	IF	CITATIONS
19	Dating of zircon from Ti-clinohumite–bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology, 2003, 31, 713.	4.4	66
20	Stable isotope fractionation of tungsten during adsorption on Fe and Mn (oxyhydr)oxides. Geochimica Et Cosmochimica Acta, 2017, 204, 52-67.	3.9	56
21	U–Pb and Al–Mg systematics of the ungrouped achondrite Northwest Africa 7325. Geochimica Et Cosmochimica Acta, 2016, 183, 31-45.	3.9	53
22	Island arc volcanic rocks in the north Qaidam UHP belt, northern Tibet plateau: Evidence for ocean–continent subduction preceding continent–continent subduction. Journal of Asian Earth Sciences, 2006, 28, 151-159.	2.3	52
23	Precise and accurate determination of 147Sm/144Nd and 143Nd/144Nd in monazite using laser ablation-MC-ICPMS. Chemical Geology, 2011, 282, 45-57.	3.3	47
24	U–Pb chronology and geochemistry of detrital monazites from major African rivers: Constraints on the timing and nature of the Pan-African Orogeny. Precambrian Research, 2016, 282, 139-156.	2.7	42
25	The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics. Geochimica Et Cosmochimica Acta, 2019, 245, 597-627.	3.9	41
26	Timing of global crustal metamorphism on Vesta as revealed by high-precision U–Pb dating and trace element chemistry of eucrite zircon. Earth and Planetary Science Letters, 2015, 409, 182-192.	4.4	39
27	Zircon U–Pb ages from tuff beds of the upper Mesozoic Tetori Group in the Shokawa district, Gifu Prefecture, central Japan ^{â€} . Island Arc, 2006, 15, 378-390.	1.1	37
28	Geochemistry, Geochronology and Isotopic Evolution of the Chewore-Rufunsa Terrane, Southern Irumide Belt: a Mesoproterozoic Continental Margin Arc. Journal of Petrology, 2007, 48, 1411-1441.	2.8	37
29	The initial abundance and distribution of 92 Nb in the Solar System. Earth and Planetary Science Letters, 2016, 439, 172-181.	4.4	37
30	Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,119.	3.3	35
31	Evaluation of colloidal silicagels for lead isotopic measurements using thermal ionisation mass spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1439.	3.0	34
32	Geochemical Discrimination of Monazite Source Rock Based on Machine Learning Techniques and Multinomial Logistic Regression Analysis. Geosciences (Switzerland), 2020, 10, 63.	2.2	33
33	Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal history and provenance. Contributions To Mineralogy and Petrology, 2010, 160, 803-823.	3.1	32
34	Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion. Earth and Planetary Science Letters, 2017, 470, 87-95.	4.4	31
35	The equation of state of orthorhombic perovskite in a peridotitic mantle composition to 80 GPa: implications for chemical composition of the lower mantle. Physics of the Earth and Planetary Interiors, 2004, 145, 9-17.	1.9	30
36	The tungsten isotopic composition of Eoarchean rocks: Implications for early silicate differentiation and core–mantle interaction on Earth. Earth and Planetary Science Letters, 2010, 291, 189-200.	4.4	29

#	Article	IF	CITATIONS
37	U-Pb, Rb-Sr and Ar-Ar systematics of the ungrouped achondrites Northwest Africa 6704 and Northwest Africa 6693. Geochimica Et Cosmochimica Acta, 2019, 245, 628-642.	3.9	27
38	Imbricated ocean-plate stratigraphy and U-Pb zircon ages from tuff beds in cherts in the Ballantrae complex, SW Scotland. Bulletin of the Geological Society of America, 2010, 122, 454-464.	3.3	24
39	Variation of Iron Isotope Ratios in Anthropogenic Materials Emitted through Combustion Processes. Chemistry Letters, 2016, 45, 970-972.	1.3	24
40	Tracing the provenance and recrystallization processes of the Earth's oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm–Nd isotopic study of monazite. Earth and Planetary Science Letters, 2011, 308, 350-358.	4.4	23
41	U–Pb systematics of the unique achondrite Ibitira: Precise age determination and petrogenetic implications. Geochimica Et Cosmochimica Acta, 2014, 132, 259-273.	3.9	23
42	An improved U–Pb age dating method for zircon and monazite using 200/266 nm femtosecond laser ablation and enhanced sensitivity multiple-Faraday collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2015, 30, 494-505.	3.0	23
43	Imbricate structure of the Luobusa Ophiolite and surrounding rock units, southern Tibet. Journal of Asian Earth Sciences, 2007, 29, 296-304.	2.3	20
44	Recurrent rare earth element mineralization in the northwestern Okcheon Metamorphic Belt, Korea: SHRIMP U–Th–Pb geochronology, Nd isotope geochemistry, and tectonic implications. Ore Geology Reviews, 2015, 71, 99-115.	2.7	19
45	REE-Th-U and Nd isotope systematics of monazites in magnetite- and ilmenite-series granitic rocks of the Japan arc: Implications for its use as a tracer of magma evolution and detrital provenance. Chemical Geology, 2018, 484, 69-80.	3.3	19
46	The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean. Geochemistry, Geophysics, Geosystems, 2013, 14, 1929-1939.	2.5	15
47	Determination of the geographical origin of marine mussels (Mytilus spp.) using 143Nd/144Nd ratios. Marine Environmental Research, 2019, 148, 12-18.	2.5	15
48	Fossilized Melts in Mantle Wedge Peridotites. Scientific Reports, 2018, 8, 10116.	3.3	14
49	The geologic history of Vesta inferred from combined 207Pb/206Pb and 40Ar/39Ar chronology of basaltic eucrites. Geochimica Et Cosmochimica Acta, 2019, 267, 275-299.	3.9	14
50	Chapter 3.1 The Early Archean Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2007, 15, 127-147.	0.2	13
51	Stochastic modeling of 3-D compositional distribution in the crust with Bayesian inference and application to geoneutrino observation in Japan. Physics of the Earth and Planetary Interiors, 2019, 288, 37-57.	1.9	13
52	Compressibility of the calcium aluminosilicate, CAS, phase to 44GPa. Physics of the Earth and Planetary Interiors, 2005, 150, 331-338.	1.9	11
53	Improvements in the precision and accuracy of elemental and isotopic analyses of geochemical samples by a laser ablation-ICP-mass spectrometer. Bunseki Kagaku, 2004, 53, 491-501.	0.2	10
54	Unraveling the mechanism and impact of oxide production in LA-ICP-MS by comprehensive analysis of REE-Th-U phosphates. Journal of Analytical Atomic Spectrometry, 2017, 32, 2003-2010.	3.0	10

#	Article	IF	CITATIONS
55	Halogen Heterogeneity in the Lithosphere and Evolution of Mantle Halogen Abundances Inferred From Intraplate Mantle Xenoliths. Geochemistry, Geophysics, Geosystems, 2019, 20, 952-973.	2.5	8
56	Sequential Chemical Separation of Cr and Ti from a Single Digest for Highâ€Precision Isotope Measurements of Planetary Materials. Geostandards and Geoanalytical Research, 2019, 43, 133-145.	3.1	8
57	Irradiation origin of 10Be in the solar nebula: Evidence from Li-Be-B and Al-Mg isotope systematics, and REE abundances of CAIs from Yamato-81020 CO3.05 chondrite. Geochimica Et Cosmochimica Acta, 2021, 293, 187-204.	3.9	7
58	Using neodymium isotope ratio in Ruditapes philipinarum shells for tracking the geographical origin. Food Chemistry, 2022, 382, 131914.	8.2	6
59	The promise and potential pitfalls of acid leaching for Pb Pb chronology. Chemical Geology, 2019, 525, 343-355.	3.3	5
60	Anadromy sustained in the artificially land-locked population of Sakhalin taimen in northern Japan. Environmental Biology of Fishes, 2019, 102, 1219-1230.	1.0	5
61	Palaeogeographic and tectonic setting of the Lower Jurassic (Pliensbachian†oarcian) Nishinakayama Formation, Toyora Group, SW Japan. Geological Journal, 2020, 55, 862-874.	1.3	5
62	Evidence for early asteroidal collisions prior to 4.15 Ga from basaltic eucrite phosphate U–Pb chronology. Earth and Planetary Science Letters, 2020, 549, 116497.	4.4	5
63	Improved method for highly precise and accurate & lt;sup>182W/klt;sup>184W isotope measurements by multiple collector inductively coupled plasma mass spectrometry and application for terrestrial samples. Geochemical lournal, 2020, 54, 117-127.	1.0	5
64	Thermal state of the upper mantle and the origin of the Cambrian-Ordovician ophiolite pulse: Constraints from ultramafic dikes of the Hayachine-Miyamori ophiolite. American Mineralogist, 2020, 105, 1778-1801.	1.9	4
65	Depositional and diagenetic history of limestones and dolostones of the Oligoâ€Miocene Kujung Formation in the Northeast Java Basin, Indonesia. Island Arc, 2019, 28, e12326.	1.1	3
66	Hf-O isotope systematics of zircons from the Taitao granitoids: Implications for slab-melting material. Lithos, 2020, 372-373, 105665.	1.4	2
67	Numerical data of probabilistic 3D lithological map of Japanese crust. Data in Brief, 2019, 26, 104497.	1.0	1
68	Detrital zircon evidence for Archean crustal development and plate subduction from the Murmac Bay Group in the Rae Craton, Canada. Geochemical Journal, 2019, 53, 171-179.	1.0	0