
Francisco J Rivera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the Two Inducible Cre Recombinase-Based Mouse Models NG2-CreERâ,,¢ and PDGFRb-P2A-CreER ^{T2} for Pericyte Labeling in the Retina. Current Eye Research, 2022, 47, 590-596.	1.5	9
2	Neuronâ€glia (mis)interactions in brain energy metabolism during aging. Journal of Neuroscience Research, 2022, 100, 835-854.	2.9	10
3	Impaired intracellular trafficking of sodiumâ€dependent vitamin C transporter 2 contributes to the redox imbalance in Huntington's disease. Journal of Neuroscience Research, 2021, 99, 223-235.	2.9	4
4	The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful?. Frontiers in Cellular Neuroscience, 2021, 15, 636176.	3.7	64
5	Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe?. Frontiers in Aging Neuroscience, 2020, 12, 572090.	3.4	78
6	DCX+ neuronal progenitors contribute to new oligodendrocytes during remyelination in the hippocampus. Scientific Reports, 2020, 10, 20095.	3.3	16
7	Pericytes in Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2019, 1147, 167-187.	1.6	7
8	Expression of DDR1 in the CNS and in myelinating oligodendrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118483.	4.1	24
9	Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination. Glia, 2019, 67, 1510-1525.	4.9	28
10	Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Translational Research, 2019, 210, 57-79.	5.0	9
11	Pericytes in the Retina. Advances in Experimental Medicine and Biology, 2019, 1122, 1-26.	1.6	25
12	Pericytes Favor Oligodendrocyte Fate Choice in Adult Neural Stem Cells. Frontiers in Cellular Neuroscience, 2019, 13, 85.	3.7	19
13	Extracellular Vesicles Can Deliver Anti-inflammatory and Anti-scarring Activities of Mesenchymal Stromal Cells After Spinal Cord Injury. Frontiers in Neurology, 2019, 10, 1225.	2.4	61
14	Dimethylsulfoxide Inhibits Oligodendrocyte Fate Choice of Adult Neural Stem and Progenitor Cells. Frontiers in Neuroscience, 2019, 13, 1242.	2.8	6
15	Human mesenchymal factors induce rat hippocampal―and human neural stem cell dependent oligodendrogenesis. Glia, 2018, 66, 145-160.	4.9	22
16	Age Influences Microglial Activation After Cuprizone-Induced Demyelination. Frontiers in Aging Neuroscience, 2018, 10, 278.	3.4	29
17	Retinal Pericytes: Characterization of Vascular Development-Dependent Induction Time Points in an Inducible NG2 Reporter Mouse Model. Current Eye Research, 2018, 43, 1274-1285.	1.5	5
18	Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination. Cell Reports. 2017. 20. 1755-1764.	6.4	100

Francisco J Rivera

#	Article	IF	CITATIONS
19	α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility. Scientific Reports, 2017, 7, 11765.	3.3	12
20	Editorial: The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration. Frontiers in Cell and Developmental Biology, 2017, 5, 88.	3.7	5
21	Brain and Retinal Pericytes: Origin, Function and Role. Frontiers in Cellular Neuroscience, 2016, 10, 20.	3.7	187
22	Bisphenol-A and metabolic diseases: epigenetic, developmental and transgenerational basis. Environmental Epigenetics, 2016, 2, dvw022.	1.8	48
23	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
24	Lesion-Induced Accumulation of Platelets Promotes Survival of Adult Neural Stem / Progenitor Cells. Experimental Neurology, 2015, 269, 75-89.	4.1	33
25	Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nature Communications, 2015, 6, 8466.	12.8	139
26	Beyond Clotting: A Role of Platelets in CNS Repair?. Frontiers in Cellular Neuroscience, 2015, 9, 511.	3.7	20
27	Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina. Histochemistry and Cell Biology, 2014, 142, 601-617.	1.7	12
28	TGFâ€beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. Journal of Cellular and Molecular Medicine, 2014, 18, 1444-1459.	3.6	118
29	Chroman-like cyclic prenylflavonoids promote neuronal differentiation and neurite outgrowth and are neuroprotective. Journal of Nutritional Biochemistry, 2013, 24, 1953-1962.	4.2	58
30	Bone morphogenetic proteins prevent bone marrow stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord. Stem Cell Research, 2013, 11, 758-771.	0.7	18
31	Brain pericyte plasticity as a potential drug target in CNS repair. Drug Discovery Today, 2013, 18, 456-463.	6.4	46
32	Neural Crest Origin of Retinal and Choroidal Pericytes. , 2013, 54, 7910.		67
33	Mesenchymal Stem Cell Conditioning Promotes Rat Oligodendroglial Cell Maturation. PLoS ONE, 2013, 8, e71814.	2.5	45
34	Tendons from Non-diabetic Humans and Rats Harbor a Population of Insulin-producing, Pancreatic Beta Cell-like Cells. Hormone and Metabolic Research, 2012, 44, 506-510.	1.5	11
35	Mesenchymal Stem Cells Prime Proliferating Adult Neural Progenitors Toward an Oligodendrocyte Fate. Stem Cells and Development, 2012, 21, 1838-1851.	2.1	55
36	p57kip2 regulates glial fate decision in adult neural stem cells. Development (Cambridge), 2012, 139, 3306-3315.	2.5	27

Francisco J Rivera

#	Article	IF	CITATIONS
37	Adult mesenchymal stem cell therapy for myelin repair in Multiple Sclerosis. Biological Research, 2012, 45, 257-268.	3.4	42
38	The remyelination Philosopher's Stone: stem and progenitor cell therapies for multiple sclerosis. Cell and Tissue Research, 2012, 349, 331-347.	2.9	34
39	Neural stem cells for spinal cord repair. Cell and Tissue Research, 2012, 349, 349-362.	2.9	53
40	The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell and Tissue Research, 2011, 345, 313-328.	2.9	99
41	Identity, Fate and Potential of Cells Grown as Neurospheres: Species Matters. Stem Cell Reviews and Reports, 2011, 7, 815-835.	5.6	21
42	Inhibition of Leukotriene Receptors Boosts Neural Progenitor Proliferation. Cellular Physiology and Biochemistry, 2011, 28, 793-804.	1.6	32
43	Remyelination in Multiple Sclerosis: The Therapeutic Potential of Neural and Mesenchymal Stem/Progenitor Cells. Current Signal Transduction Therapy, 2011, 6, 293-313.	0.5	3
44	Stem Cell Quiescence in the Hippocampal Neurogenic Niche Is Associated With Elevated Transforming Growth Factor-β Signaling in an Animal Model of Huntington Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 717-728.	1.7	86
45	Deciphering the Oligodendrogenic Program of Neural Progenitors: Cell Intrinsic and Extrinsic Regulators. Stem Cells and Development, 2010, 19, 595-606.	2.1	33
46	Mesenchymal Stem Cells Promote Oligodendroglial Differentiation in Hippocampal Slice Cultures. Cellular Physiology and Biochemistry, 2009, 24, 317-324.	1.6	30
47	Prolactin Induces MAPK Signaling in Neural Progenitors without Alleviating Glucocorticoid-Induced Inhibition of in vitro Neurogenesis. Cellular Physiology and Biochemistry, 2009, 24, 397-406.	1.6	15
48	A Nuclear Magnetic Resonance Biomarker for Neural Progenitor Cells: Is It All Neurogenesis?. Stem Cells, 2009, 27, 420-423.	3.2	44
49	Oligodendrogenesis of adult neural progenitors: differential effects of ciliary neurotrophic factor and mesenchymal stem cell derived factors. Journal of Neurochemistry, 2008, 107, 832-843.	3.9	44
50	Adult hippocampus derived soluble factors induce a neuronal-like phenotype in mesenchymal stem cells. Neuroscience Letters, 2006, 406, 49-54.	2.1	31
51	Mesenchymal Stem Cells Instruct Oligodendrogenic Fate Decision on Adult Neural Stem Cells. Stem Cells, 2006, 24, 2209-2219.	3.2	161
52	Dynamic of Distribution of Human Bone Marrow-Derived Mesenchymal Stem Cells After Transplantation into Adult Unconditioned Mice. Transplantation, 2004, 78, 503-508.	1.0	137