
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1386234/publications.pdf Version: 2024-02-01

SHUO VIN

#	Article	IF	CITATIONS
1	Microstructure evolution and composition redistribution of FeCoNiCrMn high entropy alloy under extreme plastic deformation. Materials Research Letters, 2022, 10, 124-132.	8.7	15
2	Corrosion Resistance and Passivation Behavior of CoCrFeNi-TiAl High-Entropy Alloy Coatings in Acidic Solutions. Journal of Thermal Spray Technology, 2022, 31, 1673-1682.	3.1	9
3	An Assessment of the High-Temperature Oxidation Resistance of Selected Thermal Sprayed High Entropy Alloy Coatings. Journal of Thermal Spray Technology, 2022, 31, 1386-1403.	3.1	16
4	Influence of Microstructure Evolution on the Electrochemical Corrosion Behavior of (CoCrFeNi)94Ti1.5Al4.5 High Entropy Alloy Coatings. Journal of Thermal Spray Technology, 2022, 31, 1375-1385.	3.1	4
5	Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime. Materials, 2022, 15, 2238.	2.9	9
6	Microstructure and Tribological Properties of Plasma Cladding FeCoNiCr-x(TiC) Composite Coatings. Journal of Thermal Spray Technology, 2022, 31, 1649-1661.	3.1	4
7	Microstructure evolution and mechanical properties of laser additive manufactured Ti6Al4V alloy under nitrogen-argon reactive atmosphere. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 841, 143076.	5.6	6
8	Microstructural and mechanical optimization of selective laser melted Ti6Al4V lattices: Effect of hot isostatic pressing. Journal of Manufacturing Processes, 2022, 77, 151-162.	5.9	14
9	Improvement of tensile strength of cold sprayed Fe deposits via in-process powder preheating. Materials Letters, 2022, 316, 132090.	2.6	4
10	Fabrication of Ta-Ag composite deposits via cold spray: Investigation of bonding mechanism and deposition behavior. Journal of Advanced Joining Processes, 2022, 6, 100127.	2.7	1
11	Correlation between flattening ratio and wear performance of cold sprayed metal matrix composite coatings. Materials Letters, 2021, 283, 128773.	2.6	2
12	Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C. Journal of Materials Science and Technology, 2021, 68, 172-183.	10.7	52
13	Unravelling the deposition mechanism of brittle particles in metal matrix composites fabricated via cold spray additive manufacturing. Scripta Materialia, 2021, 194, 113614.	5.2	20
14	A detailed analysis on the microstructure and compressive properties of selective laser melted Ti6Al4V lattice structures. Materials and Design, 2021, 198, 109292.	7.0	21
15	Cold Sprayed Metal Matrix Composites. Springer Tracts in Additive Manufacturing, 2021, , 121-134.	0.8	0
16	Manufacturing Parameters for Cold Spray Additive Manufacturing. Springer Tracts in Additive Manufacturing, 2021, , 53-67.	0.8	1
17	Cold Spray Additive Manufacturing. Springer Tracts in Additive Manufacturing, 2021, , .	0.8	5
18	Strengthening Strategies for Cold Sprayed Deposits. Springer Tracts in Additive Manufacturing, 2021, , 91-120.	0.8	0

#	Article	IF	CITATIONS
19	Cold Sprayed Nanostructured Metallic Deposits. Springer Tracts in Additive Manufacturing, 2021, , 135-151.	0.8	0
20	Industrial Applications of Cold Spray Additive Manufacturing. Springer Tracts in Additive Manufacturing, 2021, , 167-186.	0.8	1
21	Gas Flow, Particle Acceleration and Heat Transfer in Cold Spray Additive Manufacturing. Springer Tracts in Additive Manufacturing, 2021, , 9-52.	0.8	0
22	Formation conditions of vortex-like intermixing interfaces in cold spray. Materials and Design, 2021, 200, 109444.	7.0	25
23	Current Research Status on Cold Sprayed Amorphous Alloy Coatings: A Review. Coatings, 2021, 11, 206.	2.6	17
24	The effect of heat treatment and impact angle on the erosion behavior of nickel-tungsten carbide cold spray coating using response surface methodology. Emergent Materials, 2021, 4, 1605-1618.	5.7	8
25	Al matrix composites fabricated by solid-state cold spray deposition: A critical review. Journal of Materials Science and Technology, 2021, 86, 20-55.	10.7	48
26	Ex-situ additively manufactured FeCrMoCB/Cu bulk metallic glass composite with well wear resistance. Tribology International, 2021, 162, 107112.	5.9	15
27	Fatigue Crack Growth Behaviour and Role of Roughness-Induced Crack Closure in CP Ti: Stress Amplitude Dependence. Metals, 2021, 11, 1656.	2.3	4
28	Applications of Laser in Cold Spray. , 2021, , 395-427.		0
29	Metallurgical bonding between metal matrix and core-shelled reinforcements in cold sprayed composite coating. Scripta Materialia, 2020, 177, 49-53.	5.2	33
30	Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering C, 2020, 106, 110289.	7.3	158
31	Cold spray additive manufacturing of metal matrix composites (MMCs) using a novel nano-TiB2-reinforced 7075Al powder. Journal of Alloys and Compounds, 2020, 819, 152962.	5.5	34
32	Solid-state cold spraying of Ti and its alloys: A literature review. Progress in Materials Science, 2020, 110, 100633.	32.8	123
33	Microstructure and cavitation erosion performance of nickel-Inconel 718 composite coatings produced with cold spray. Surface and Coatings Technology, 2020, 382, 125195.	4.8	28
34	Microstructural features and compressive properties of SLM Ti6Al4V lattice structures. Surface and Coatings Technology, 2020, 403, 126419.	4.8	47
35	A new strategy for strengthening additively manufactured cold spray deposits through in-process densification. Additive Manufacturing, 2020, 36, 101626.	3.0	14
36	Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 781, 139227.	5.6	57

#	Article	IF	CITATIONS
37	Achieving simultaneously improved tensile strength and ductility of a nano-TiB2/AlSi10Mg composite produced by cold spray additive manufacturing. Composites Part B: Engineering, 2020, 202, 108404.	12.0	44
38	Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI. Surface and Coatings Technology, 2020, 396, 125955.	4.8	25
39	Minimum fatigue striation spacing and its stress amplitude dependence in a commercially pure titanium. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 628-634.	3.4	7
40	Tribological properties of Al/diamond composites produced by cold spray additive manufacturing. Additive Manufacturing, 2020, 36, 101434.	3.0	12
41	Mechanical reliability modification of metal matrix composite coatings by adding al particles via cold spray technology. Surfaces and Interfaces, 2020, 20, 100515.	3.0	6
42	The role of particles flow characteristics in the performance of cold spray nozzles. CIRP Annals - Manufacturing Technology, 2020, 69, 189-192.	3.6	8
43	Microstructure and mechanical properties of pure copper manufactured by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139615.	5.6	76
44	Post-Process Treatments on Supersonic Cold Sprayed Coatings: A Review. Coatings, 2020, 10, 123.	2.6	50
45	Solid state additive manufacture of highly-reflective Al coatings using cold spray. Optics and Laser Technology, 2019, 115, 251-256.	4.6	16
46	Effect of hot isostatic pressing (HIP) treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting. Materials Letters, 2019, 255, 126537.	2.6	30
47	Hybrid additive manufacture of 316L stainless steel with cold spray and selective laser melting: Microstructure and mechanical properties. Journal of Materials Processing Technology, 2019, 273, 116248.	6.3	39
48	Texture and Microstructural Features at Different Length Scales in Inconel 718 Produced by Selective Laser Melting. Materials, 2019, 12, 1293.	2.9	58
49	Nanostructured Metal Coatings via Cold Spray. , 2019, , 27-60.		2
50	Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition. Materials Research Letters, 2019, 7, 327-333.	8.7	60
51	Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing. Additive Manufacturing, 2019, 27, 595-605.	3.0	82
52	Annealing strategies for enhancing mechanical properties of additively manufactured 316L stainless steel deposited by cold spray. Surface and Coatings Technology, 2019, 370, 353-361.	4.8	59
53	Mechanical and inÂvitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting. Journal of Alloys and Compounds, 2019, 782, 209-223.	5.5	112
54	Thermal Spray Technology. Advances in Materials Science and Engineering, 2019, 2019, 1-2.	1.8	8

#	Article	IF	CITATIONS
55	Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. Journal of Materials Science and Technology, 2019, 35, 1003-1007.	10.7	158
56	New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification. Journal of Materials Science and Technology, 2019, 35, 427-431.	10.7	31
57	A Review of Advanced Composite and Nanostructured Coatings by Solid-State Cold Spraying Process. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 109-156.	12.3	50
58	Hybrid additive manufacture of 316L stainless steel with cold spray and selective laser melting: Microstructure and mechanical properties. , 2019, 273, 116248-116248.		1
59	Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 2018, 21, 628-650.	3.0	269
60	Formation mechanism and microstructure characterization of nickel-aluminum intertwining interface in cold spray. Surface and Coatings Technology, 2018, 337, 447-452.	4.8	13
61	Hybrid additive manufacturing of Al-Ti6Al4V functionally graded materials with selective laser melting and cold spraying. Journal of Materials Processing Technology, 2018, 255, 650-655.	6.3	78
62	Solid-state additive manufacturing and repairing by cold spraying: A review. Journal of Materials Science and Technology, 2018, 34, 440-457.	10.7	238
63	Cold Spray Additive Manufacture and Component Restoration. , 2018, , 195-224.		9
64	Numerical and Experimental Investigation on Bonding Behavior of Cold Sprayed Porous WC-17Co Particles onto Different Substrates. Coatings, 2018, 8, 367.	2.6	5
65	Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. Journal of Alloys and Compounds, 2018, 764, 1056-1071.	5.5	219
66	Cold-Sprayed Metal Coatings with Nanostructure. Advances in Materials Science and Engineering, 2018, 2018, 1-19.	1.8	23
67	Microstructure and mechanical anisotropy of additively manufactured cold spray copper deposits. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 67-76.	5.6	67
68	Advanced diamond-reinforced metal matrix composites via cold spray: Properties and deposition mechanism. Composites Part B: Engineering, 2017, 113, 44-54.	12.0	109
69	Novel cold spray for fabricating graphene-reinforced metal matrix composites. Materials Letters, 2017, 196, 172-175.	2.6	36
70	Cold spraying of WC-Co-Ni coatings using porous WC-17Co powders: Formation mechanism, microstructure characterization and tribological performance. Materials and Design, 2017, 126, 305-313.	7.0	62
71	A novel spiral trajectory for damage component recovery with cold spray. Surface and Coatings Technology, 2017, 309, 719-728.	4.8	44
72	Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review. Journal of Thermal Spray Technology, 2016, 25, 874-896.	3.1	111

#	Article	IF	CITATIONS
73	New insights into the coating/substrate interfacial bonding mechanism in cold spray. Scripta Materialia, 2016, 125, 1-4.	5.2	90
74	Enabling Diamond Deposition with Cold Spray through the Coated Particle Method. Materials Science Forum, 2016, 879, 1194-1199.	0.3	4
75	A novel method for metal–diamond composite coating deposition with cold spray and formation mechanism. Scripta Materialia, 2016, 115, 10-13.	5.2	45
76	Assessment of porous media instead of slatted floor for modelling the airflow and ammonia emission in the pit headspace. Computers and Electronics in Agriculture, 2016, 123, 163-175.	7.7	9
77	Characterization of Yttria-Stabilized Zirconia Coatings Deposited by Low-Pressure Plasma Spraying. Journal of Thermal Spray Technology, 2016, 25, 558-566.	3.1	9
78	Evaluation of the interfacial bonding between particles and substrate in angular cold spray. Materials Letters, 2016, 173, 76-79.	2.6	45
79	Effect of substrate temperature on interfacial bonding for cold spray of Ni onto Cu. Journal of Materials Science, 2015, 50, 7448-7457.	3.7	69
80	Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic. Journal of Materials Processing Technology, 2015, 222, 61-74.	6.3	101
81	Effect of the deviation of the current density profile center on the three-dimensional non-transferred arc plasma torch. Computers and Fluids, 2015, 114, 163-171.	2.5	7
82	Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle. Journal of Thermal Spray Technology, 2015, 24, 696-701.	3.1	29
83	Deposition features of cold sprayed copper particles on preheated substrate. Surface and Coatings Technology, 2015, 268, 252-256.	4.8	41
84	Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spray. Materials Letters, 2015, 138, 143-147.	2.6	48
85	Strong effect of carrier gas species on particle velocity during cold spray processes. Surface and Coatings Technology, 2015, 268, 90-93.	4.8	49
86	Three-dimensional simulation of an argon–hydrogen DC non-transferred arc plasma torch. International Journal of Heat and Mass Transfer, 2015, 80, 644-652.	4.8	28
87	Euler based finite element analysis on high velocity impact behaviour in cold spraying. Surface Engineering, 2014, 30, 309-315.	2.2	21
88	Significant influence of carrier gas temperature during the cold spray process. Surface Engineering, 2014, 30, 443-450.	2.2	39
89	Effect of injection pressure on particle acceleration, dispersion and deposition in cold spray. Computational Materials Science, 2014, 90, 7-15.	3.0	47
90	Effects of Substrate Hardness and Spray Angle on the Deposition Behavior of Cold-Sprayed Ti Particles. Journal of Thermal Spray Technology, 2014, 23, 76-83.	3.1	57

#	Article	IF	CITATIONS
91	Deposition Features of Ti Coating Using Irregular Powders in Cold Spray. Journal of Thermal Spray Technology, 2014, 23, 984-990.	3.1	26
92	Deposition behavior of thermally softened copper particles in cold spraying. Acta Materialia, 2013, 61, 5105-5118.	7.9	150
93	Effect of Spray Angle on Temperature Distribution within the Metallic Substrate in Cold Spraying. Journal of Thermal Spray Technology, 2013, 22, 983-991.	3.1	11
94	Numerical investigations on the effect of total pressure and nozzle divergent length on the flow character and particle impact velocity in cold spraying. Surface and Coatings Technology, 2013, 232, 290-297.	4.8	27
95	Leakage Characteristic of Helical Groove Seal Designed in Reactor Coolant Pump. International Journal of Rotating Machinery, 2012, 2012, 1-8.	0.8	3
96	Deformation behavior of the oxide film on the surface of cold sprayed powder particle. Applied Surface Science, 2012, 259, 294-300.	6.1	96
97	Numerical Study on the Effect of Substrate Size on the Supersonic Jet Flow and Temperature Distribution Within the Substrate in Cold Spraying. Journal of Thermal Spray Technology, 2012, 21, 628-635.	3.1	17
98	Influence of Particle Initial Temperature on High Velocity Impact Process in Cold Spraying. Procedia Environmental Sciences, 2012, 12, 298-304.	1.4	15
99	An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods. Journal of Thermal Spray Technology, 2012, 21, 41-48.	3.1	22
100	The Effect of Inlet Convergence Angle on Flow Field and Performance inside the Jet Pump. , 2011, , .		4
101	Computational analysis of the effect of nozzle cross-section shape on gas flow and particle acceleration in cold spraying. Surface and Coatings Technology, 2011, 205, 2970-2977.	4.8	38
102	Examination on Substrate Preheating Process in Cold Gas Dynamic Spraying. Journal of Thermal Spray Technology, 2011, 20, 852-859.	3.1	27
103	Effect of substrate hardness on the deformation behavior of subsequently incident particles in cold spraying. Applied Surface Science, 2011, 257, 7560-7565.	6.1	74
104	The Role of Material Properties in Cold Spraying for the Surface Modification of Nuclear Main Pump. , 2011, , .		3
105	Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying. Journal of Thermal Spray Technology, 2010, 19, 1032-1041.	3.1	69
106	Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD. Journal of Thermal Spray Technology, 2010, 19, 1155-1162.	3.1	37
107	Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Applied Surface Science, 2010, 256, 3725-3734.	6.1	94
108	Numerical Investigation on the Interaction between the Volume and Diffuser with Different Outlet Angles in Nuclear Main Pump. , 2010, , .		0

#	Article	IF	CITATIONS
109	Numerical Investigation on Effects of Interactions Between Particles on Coating Formation in Cold Spraying. Journal of Thermal Spray Technology, 2009, 18, 686-693.	3.1	38
110	Cold Spraying of IN 718-Ni Composite Coatings: Microstructure Characterization and Tribological Performance. Materials Science Forum, 0, 1016, 840-845.	0.3	0