Joy Bergelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1386178/publications.pdf

Version: 2024-02-01

12330 9589 22,757 148 69 142 citations g-index h-index papers 175 175 175 19503 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Species-specific partial gene duplication in <i>Arabidopsis thaliana</i> evolved novel phenotypic effects on morphological traits under strong positive selection. Plant Cell, 2022, 34, 802-817.	6.6	15
2	Genome-wide association mapping within a local <i>Arabidopsis thaliana</i> population more fully reveals the genetic architecture for defensive metabolite diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	12
3	Natural Bacterial Assemblages in Arabidopsis thaliana Tissues Become More Distinguishable and Diverse during Host Development. MBio, 2021, 12, .	4.1	18
4	Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions. Metabolites, $2021,11,230.$	2.9	1
5	Functional biology in its natural context: A search for emergent simplicity. ELife, 2021, 10, .	6.0	34
6	Assessing the potential to harness the microbiome through plant genetics. Current Opinion in Biotechnology, 2021, 70, 167-173.	6.6	25
7	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	1.9	13
8	The study of host–microbiome (co)evolution across levels of selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190604.	4.0	69
9	Population Genetics of the Highly Polymorphic RPP8 Gene Family. Genes, 2019, 10, 691.	2.4	12
10	Genomeâ€wide association studies on the phyllosphere microbiome: Embracing complexity in host–microbe interactions. Plant Journal, 2019, 97, 164-181.	5.7	77
11	Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24.	3.3	135
12	Genomeâ€wide association study reveals new loci involved in <i>Arabidopsis thaliana</i> and <i>Turnip mosaic virus</i> (Tu <scp>MV</scp>) interactions in the field. New Phytologist, 2019, 221, 2026-2038.	7.3	30
13	Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5440-E5449.	7.1	52
14	The molecular genetic basis of herbivory between butterflies and their host plants. Nature Ecology and Evolution, 2018, 2, 1418-1427.	7.8	56
15	The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genetics, 2018, 14, e1007155.	3.5	116
16	Mechanisms to Mitigate the Trade-Off between Growth and Defense. Plant Cell, 2017, 29, 666-680.	6.6	436
17	Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nature Ecology and Evolution, 2017, 1, 1551-1561.	7.8	89
18	Similar levels of gene content variation observed for Pseudomonas syringae populations extracted from single and multiple host species. PLoS ONE, 2017, 12, e0184195.	2.5	8

#	Article	IF	CITATIONS
19	Differentiation between MAMP Triggered Defenses in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006068.	3. 5	33
20	The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana. Current Topics in Developmental Biology, 2016, 119, 111-156.	2.2	39
21	Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell, 2016, 166, 492-505.	28.9	594
22	Genetic architecture and pleiotropy shape costs of Rps2-mediated resistance in Arabidopsis thaliana. Nature Plants, 2016, 2, 16110.	9.3	48
23	1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 2016, 166, 481-491.	28.9	1,107
24	Modulation of <i>R</i> -gene expression across environments. Journal of Experimental Botany, 2016, 67, 2093-2105.	4.8	40
25	A Proposal Regarding Best Practices for Validating the Identity of Genetic Stocks and the Effects of Genetic Variants. Plant Cell, 2016, 28, 606-609.	6.6	31
26	16Stimator: statistical estimation of ribosomal gene copy numbers from draft genome assemblies. ISME Journal, 2016, 10, 1020-1024.	9.8	40
27	A genomeâ€wide survey reveals abundant rice blast <i>R</i> Âgenes in resistant cultivars. Plant Journal, 2015, 84, 20-28.	5.7	42
28	Century-scale Methylome Stability in a Recently Diverged Arabidopsis thaliana Lineage. PLoS Genetics, 2015, 11, e1004920.	3.5	148
29	Coselected genes determine adaptive variation in herbivore resistance throughout the native range of <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4032-4037.	7.1	117
30	Multiple <i>FLC</i> haplotypes defined by independent <i>cis</i> regulatory variation underpin life history diversity in <i>Arabidopsis thaliana</i> Genes and Development, 2014, 28, 1635-1640.	5.9	122
31	Unique features of the m6A methylome in Arabidopsis thaliana. Nature Communications, 2014, 5, 5630.	12.8	342
32	Genomic variability as a driver of plant–pathogen coevolution?. Current Opinion in Plant Biology, 2014, 18, 24-30.	7.1	119
33	Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 2014, 5, 5320.	12.8	322
34	The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature, 2014, 512, 436-440.	27.8	182
35	The role of glucosinolates and the jasmonic acid pathway in resistance of <i>Arabidopsis thaliana</i> against molluscan herbivores. Molecular Ecology, 2014, 23, 1188-1203.	3.9	95
36	Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in <i><scp>A</scp>rabidopsis thaliana</i> . Molecular Ecology, 2013, 22, 4222-4240.	3.9	101

#	Article	IF	Citations
37	Genome-wide association mapping of flowering time in <i>Arabidopsis thaliana</i> in nature: genetics for underlying components and reaction norms across two successive years. Acta Botanica Gallica, 2013, 160, 205-219.	0.9	19
38	An Atypical Kinase under Balancing Selection Confers Broad-Spectrum Disease Resistance in Arabidopsis. PLoS Genetics, 2013, 9, e1003766.	3.5	117
39	Bacterial Communities Associated with the Leaves and the Roots of Arabidopsis thaliana. PLoS ONE, 2013, 8, e56329.	2.5	679
40	Flagellin Perception Varies Quantitatively in Arabidopsis thaliana and Its Relatives. Molecular Biology and Evolution, 2012, 29, 1655-1667.	8.9	77
41	Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nature Genetics, 2012, 44, 212-216.	21.4	476
42	Adaptation to Climate Across the <i>Arabidopsis thaliana</i>	12.6	636
43	Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar014-bar014.	3.0	8
44	Cheating, trade-offs and the evolution of aggressiveness in a natural pathogen population. Ecology Letters, 2011, 14, 1149-1157.	6.4	58
45	Source verification of misâ€identified <i>Arabidopsis thaliana</i> accessions. Plant Journal, 2011, 67, 554-566.	5.7	63
46	MALADAPTATION IN WILD POPULATIONS OF THE GENERALIST PLANT PATHOGEN PSEUDOMONAS SYRINGAE. Evolution; International Journal of Organic Evolution, 2011, 65, 818-830.	2.3	70
47	The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.	21.4	814
48	Plant immune system incompatibility and the distribution of enemies in natural hybrid zones. Current Opinion in Plant Biology, 2010, 13, 466-471.	7.1	20
49	Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465, 627-631.	27.8	1,651
50	Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature, 2010, 465, 632-636.	27.8	378
51	Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nature Reviews Genetics, 2010, 11, 867-879.	16.3	297
52	Impact of Initial Pathogen Density on Resistance and Tolerance in a Polymorphic Disease Resistance Gene System in <i>Arabidopsis thaliana</i>	2.9	29
53	Linkage and Association Mapping of Arabidopsis thaliana Flowering Time in Nature. PLoS Genetics, 2010, 6, e1000940.	3.5	415
54	MARTA: a suite of Java-based tools for assigning taxonomic status to DNA sequences. Bioinformatics, 2010, 26, 568-569.	4.1	67

#	Article	IF	CITATIONS
55	A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven by Natural Variation of the Sodium Transporter AtHKT1;1. PLoS Genetics, 2010, 6, e1001193.	3.5	317
56	The Scale of Population Structure in Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1000843.	3.5	338
57	The ARABIDOPSIS Accession Pna-10 Is a Naturally Occurring sng1 Deletion Mutant. Molecular Plant, 2010, 3, 91-100.	8.3	28
58	Association mapping of local climate-sensitive quantitative trait loci in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21199-21204.	7.1	278
59	Variation in the Ratio of Nucleotide Substitution and Indel Rates across Genomes in Mammals and Bacteria. Molecular Biology and Evolution, 2009, 26, 1523-1531.	8.9	115
60	Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences. New Phytologist, 2009, 183, 513-529.	7.3	176
61	Quantitative fitness effects of infection in a geneâ€forâ€gene system. New Phytologist, 2009, 184, 485-494.	7.3	18
62	Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature, 2008, 455, 105-108.	27.8	226
63	Root Exudates Regulate Soil Fungal Community Composition and Diversity. Applied and Environmental Microbiology, 2008, 74, 738-744.	3.1	659
64	Low Levels of Polymorphism in Genes That Control the Activation of Defense Response in <i>Arabidopsis thaliana</i> . Genetics, 2008, 178, 2031-2043.	2.9	57
65	Molecular Evolution of Pathogenicity-Island Genes in <i>Pseudomonas viridiflava</i> . Genetics, 2007, 177, 1031-1041.	2.9	10
65	Molecular Evolution of Pathogenicity-Island Genes in <i>Pseudomonas viridiflava</i> The Role of Pectate Lyase and the Jasmonic Acid Defense Response in Pseudomonas viridiflava Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 146-158.	2.9	10
	The Role of Pectate Lyase and the Jasmonic Acid Defense Response in Pseudomonas viridiflava		
66	The Role of Pectate Lyase and the Jasmonic Acid Defense Response in Pseudomonas viridiflava Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 146-158. SAR INCREASES FITNESS OF ARABIDOPSIS THALIANA IN THE PRESENCE OF NATURAL BACTERIAL PATHOGENS.	2.6	28
66	The Role of Pectate Lyase and the Jasmonic Acid Defense Response in Pseudomonas viridiflava Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 146-158. SAR INCREASES FITNESS OF ARABIDOPSIS THALIANA IN THE PRESENCE OF NATURAL BACTERIAL PATHOGENS. Evolution; International Journal of Organic Evolution, 2007, 61, 2444-2449. Salicylic Acid and Jasmonic Acid Signaling Defense Pathways Reduce Natural Bacterial Diversity on	2.6	28
66 67 68	The Role of Pectate Lyase and the Jasmonic Acid Defense Response in Pseudomonas viridiflava Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 146-158. SAR INCREASES FITNESS OF ARABIDOPSIS THALIANA IN THE PRESENCE OF NATURAL BACTERIAL PATHOGENS. Evolution; International Journal of Organic Evolution, 2007, 61, 2444-2449. Salicylic Acid and Jasmonic Acid Signaling Defense Pathways Reduce Natural Bacterial Diversity on (i>Arabidopsis thaliana (i>). Molecular Plant-Microbe Interactions, 2007, 20, 1512-1522.	2.6 2.3 2.6	28 63 144
66 67 68	The Role of Pectate Lyase and the Jasmonic Acid Defense Response in Pseudomonas viridiflava Virulence. Molecular Plant-Microbe Interactions, 2007, 20, 146-158. SAR INCREASES FITNESS OF ARABIDOPSIS THALIANA IN THE PRESENCE OF NATURAL BACTERIAL PATHOGENS. Evolution; International Journal of Organic Evolution, 2007, 61, 2444-2449. Salicylic Acid and Jasmonic Acid Signaling Defense Pathways Reduce Natural Bacterial Diversity on <i>Arabidopsis thaliana </i> Ii> Molecular Plant-Microbe Interactions, 2007, 20, 1512-1522. Fitness consequences of infection of Arabidopsis thaliana with its natural bacterial pathogen Pseudomonas viridiflava. Oecologia, 2007, 152, 71-81. VARIATION IN RESISTANCE AND VIRULENCE IN THE INTERACTION BETWEEN ARABIDOPSIS THALIANA AND A	2.6 2.3 2.6	28 63 144 27

#	Article	IF	Citations
73	A Genome-Wide Survey of R Gene Polymorphisms in Arabidopsis. Plant Cell, 2006, 18, 1803-1818.	6.6	309
74	VARIATION IN RESISTANCE AND VIRULENCE IN THE INTERACTION BETWEEN ARABIDOPSIS THALIANA AND A BACTERIAL PATHOGEN. Evolution; International Journal of Organic Evolution, 2006, 60, 1562.	2.3	2
75	Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5887-5892.	7.1	78
76	Variation in resistance and virulence in the interaction between Arabidopsis thaliana and a bacterial pathogen. Evolution; International Journal of Organic Evolution, 2006, 60, 1562-73.	2.3	21
77	Scarlet gilia resistance to insect herbivory: the effects of early season browsing, plant apparency, and phytochemistry on patterns of seed fly attack. Evolutionary Ecology, 2005, 19, 79-101.	1.2	29
78	The Pattern of Polymorphism in Arabidopsis thaliana. PLoS Biology, 2005, 3, e196.	5 . 6	895
79	Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes. PLoS Genetics, 2005, 1, e60.	3.5	378
80	Reduced Genetic Variation Occurs among Genes of the Highly Clonal Plant Pathogen Xanthomonas axonopodis pv. vesicatoria, Including the Effector Gene avrBs2. Applied and Environmental Microbiology, 2005, 71, 2418-2432.	3.1	36
81	Genetic Diversity, Recombination and Cryptic Clades in Pseudomonas viridiflava Infecting Natural Populations of Arabidopsis thalianaSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY604840, AY604841, AY604842, AY604843, AY604844, AY604845, AY604846, AY604847, AY604848 and AY606338, AY606800 Genetics. 2005, 169, 21-35.	2.9	50
82	Genome-wide association mapping in Arabidopsis thaliana identifies previously known genes responsible for variation in flowering time and pathogen resistance. PLoS Genetics, 2005, preprint, e60.	3.5	3
83	Effector Genes of Xanthamonas axonopodispv.vesicatoria Promote Transmission and Enhance Other Fitness Traits in the Field. Genetics, 2004, 166, 693-706.	2.9	80
84	A Novel Cost of R Gene Resistance in the Presence of Disease. American Naturalist, 2004, 163, 489-504.	2.1	70
85	Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology, 2004, 13, 1643-1653.	3.9	197
86	Effector Genes of <i>Xanthamonas axonopodis</i> pv. <i>vesicatoria</i> Promote Transmission and Enhance Other Fitness Traits in the Field. Genetics, 2004, 166, 693-706.	2.9	17
87	Genetic variation and relationships of constitutive and herbivore-induced glucosinolates, trypsin inhibitors, and herbivore resistance in Brassica rapa. Journal of Chemical Ecology, 2003, 29, 285-302.	1.8	25
88	Costs of induced responses in plants. Basic and Applied Ecology, 2003, 4, 79-89.	2.7	200
89	Negative crossâ€talk between salicylate†and jasmonateâ€mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Molecular Ecology, 2003, 12, 1125-1135.	3.9	79
90	Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 2003, 423, 74-77.	27.8	697

#	Article	IF	CITATIONS
91	Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis. Plant Physiology, 2003, 133, 1367-1375.	4.8	328
92	A Developmental Response to Pathogen Infection in Arabidopsis. Plant Physiology, 2003, 133, 339-347.	4.8	119
93	Natural Selection for Polymorphism in the Disease Resistance Gene <i>Rps2</i> of <i>Arabidopsis thaliana</i> . Genetics, 2003, 163, 735-746.	2.9	177
94	Signature of balancing selection in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11525-11530.	7.1	245
95	The Spatial Scale of Genotype by Environment Interaction (GEI) for Fitness in the Looseâ€Flowered Gilia, Ipomopsis laxiflora (Polemoniaceae). International Journal of Plant Sciences, 2002, 163, 613-618.	1.3	7
96	Pseudomonas viridiflava and P. syringaeâ€"Natural Pathogens of Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2002, 15, 1195-1203.	2.6	84
97	The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetics, 2002, 30, 190-193.	21.4	425
98	Interspecific competition affects growth and herbivore damage of Brassica napus in the field. Plant Ecology, 2002, 162, 227-231.	1.6	34
99	Models and Data on Plant-Enemy Coevolution. Annual Review of Genetics, 2001, 35, 469-499.	7.6	157
100	Evolutionary Dynamics of Plant R-Genes. Science, 2001, 292, 2281-2285.	12.6	471
101	Diamondback moth compensatory consumption of protease inhibitor-transformed plants. Molecular Ecology, 2001, 10, 1069-1074.	3.9	52
			t e
102	Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus., 2001, 27, 593-610.		111
102	Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. , 2001, 27, 593-610. Factors affecting the spread of resistant Arabidopsis thaliana populations. , 2001, , 17-31.		111
	trypsin inhibitors in Brassica napus. , 2001, 27, 593-610.	2.3	
103	trypsin inhibitors in Brassica napus. , 2001, 27, 593-610. Factors affecting the spread of resistant Arabidopsis thaliana populations. , 2001, , 17-31. THE EVOLUTION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA: HERBIVORE-IMPOSED NATURAL SELECTION AND THE QUANTITATIVE GENETICS OF TOLERANCE. Evolution;	2.3	4
103	trypsin inhibitors in Brassica napus. , 2001, 27, 593-610. Factors affecting the spread of resistant Arabidopsis thaliana populations. , 2001, , 17-31. THE EVOLUTION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA: HERBIVORE-IMPOSED NATURAL SELECTION AND THE QUANTITATIVE GENETICS OF TOLERANCE. Evolution; International Journal of Organic Evolution, 2000, 54, 764-777. EVOLUTIONARY ECOLOGY OF THE TROPANE ALKALOIDS OF DATURA STRAMONIUM L. (SOLANACEAE).		133
103 104 105	trypsin inhibitors in Brassica napus. , 2001, 27, 593-610. Factors affecting the spread of resistant Arabidopsis thaliana populations. , 2001, , 17-31. THE EVOLUTION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA: HERBIVORE-IMPOSED NATURAL SELECTION AND THE QUANTITATIVE GENETICS OF TOLERANCE. Evolution; International Journal of Organic Evolution, 2000, 54, 764-777. EVOLUTIONARY ECOLOGY OF THE TROPANE ALKALOIDS OF DATURA STRAMONIUM L. (SOLANACEAE). Evolution; International Journal of Organic Evolution, 2000, 54, 778-788.	2.3	133

#	Article	IF	Citations
109	Factors limiting rosette recruitment in scarlet gilia, Ipomopsis aggregata: seed and disturbance limitation. Oecologia, 2000, 123, 358-363.	2.0	33
110	THE EVOLUTION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA: HERBIVORE-IMPOSED NATURAL SELECTION AND THE QUANTITATIVE GENETICS OF TOLERANCE. Evolution; International Journal of Organic Evolution, 2000, 54, 764.	2.3	18
111	DOES EARLY SEASON BROWSING INFLUENCE THE EFFECT OF SELF-POLLINATION IN SCARLET GILIA?. Ecology, 2000, 81, 41-48.	3.2	20
112	EVOLUTIONARY ECOLOGY OF THE TROPANE ALKALOIDS OF DATURA STRAMONIUM L. (SOLANACEAE). Evolution; International Journal of Organic Evolution, 2000, 54, 778.	2.3	11
113	Exploring the Physiological Basis of Costs of Herbicide Resistance inArabidopsis thaliana. American Naturalist, 1999, 154, S82-S91.	2.1	58
114	Deliberate Introductions of Species: Research Needs. BioScience, 1999, 49, 619-630.	4.9	223
115	Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature, 1999, 400, 667-671.	27.8	551
116	The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana (Brassicaceae) ecotypes. American Journal of Botany, 1999, 86, 470-475.	1.7	117
117	Promiscuity in transgenic plants. Nature, 1998, 395, 25-25.	27.8	81
118	Pairwise Versus Diffuse Natural Selection and the Multiple Herbivores of Scarlet Gilia, Ipomopsis aggregata. Evolution; International Journal of Organic Evolution, 1998, 52, 1583.	2.3	57
119	Habitats of native and exotic plants in Colorado shortgrass steppe: a comparative approach. Canadian Journal of Botany, 1998, 76, 664-672.	1.1	20
120	PAIRWISE VERSUS DIFFUSE NATURAL SELECTION AND THE MULTIPLE HERBIVORES OF SCARLET GILIA, <i>IPOMOPSIS AGGREGATA</i> Evolution; International Journal of Organic Evolution, 1998, 52, 1583-1592.	2.3	108
121	Genetic Variation Within and Among Populations of Arabidopsis thaliana. Genetics, 1998, 148, 1311-1323.	2.9	180
122	Habitats of native and exotic plants in Colorado shortgrass steppe: a comparative approach. Canadian Journal of Botany, 1998, 76, 664-672.	1.1	35
123	BLOCKING FACTORS AND HYPOTHESIS TESTS IN ECOLOGY: IS YOUR STATISTICS TEXT WRONG?. Ecology, 1997, 78, 1312-1320.	3.2	186
124	POLLEN AND RESOURCE LIMITATION OF COMPENSATION TO HERBIVORY IN SCARLET GILIA, IPOMOPSIS AGGREGATA. Ecology, 1997, 78, 1684-1695.	3.2	114
125	Pollen and Resource Limitation of Compensation to Herbivory in Scarlet Gilia, Ipomopsis Aggregata. Ecology, 1997, 78, 1684.	3.2	27
126	The Nuances of Variability: Beyond Mean Square Error and Platitudes about Fluctuating Environments. Ecology, 1997, 78, 1299-1300.	3.2	5

#	Article	IF	CITATIONS
127	Asymmetric Light Competition and Founder Control in Plant Communities. Journal of Theoretical Biology, 1997, 184, 353-358.	1.7	34
128	Fitness Consequences of Genetically Engineered Herbicide and Antibiotic Resistance in <i>Arabidopsis thaliana</i> . Genetics, 1997, 145, 807-814.	2.9	80
129	BLOCKING FACTORS AND HYPOTHESIS TESTS IN ECOLOGY: IS YOUR STATISTICS TEXT WRONG?. , 1997, 78, 131	.2.	5
130	Regrowth Following Herbivory in Ipomopsis aggregata: Compensation but not Overcompensation. American Naturalist, 1996, 148, 744-755.	2.1	77
131	Surveying Patterns in the Cost of Resistance in Plants. American Naturalist, 1996, 148, 536-558.	2.1	570
132	Interplant Communication Revisited. Ecology, 1995, 76, 2660-2663.	3.2	25
133	Assessing weediness of transgenic crops: industry plays plant ecologist. Trends in Ecology and Evolution, 1995, 10, 340-342.	8.7	25
134	The Effects of Genotype and the Environment on Costs of Resistance in Lettuce. American Naturalist, 1994, 143, 349-359.	2.1	137
135	Changes in Fecundity Do Not Predict Invasiveness: A Model Study of Transgenic Plants. Ecology, 1994, 75, 249-252.	3.2	70
136	Details of local dispersion improve the fit of neighborhood competition models. Oecologia, 1993, 95, 299-302.	2.0	9
137	Rates of Weed Spread in Spatially Heterogeneous Environments. Ecology, 1993, 74, 999-1011.	3.2	127
138	Herbivory and Ipomopsis aggregata: The Disadvantages of Being Eaten. American Naturalist, 1992, 139, 870-882.	2.1	105
139	The effects of grazers on the performance of individuals and populations of scarlet gilia, Ipomopsis aggregata. Oecologia, 1992, 90, 435-444.	2.0	63
140	Competition between plants, before and after death. Trends in Ecology and Evolution, 1991, 6, 378-379.	8.7	5
141	Life After Death: Site Pre-Emption by the Remains of Poa Annua. Ecology, 1990, 71, 2157-2165.	3.2	146
142	Spatial Patterning in Plants: Opposing Effects of Herbivory and Competition. Journal of Ecology, 1990, 78, 937.	4.0	40
143	Interspecific Competition Between Seeds: Relative Planting Date and Density Affect Seedling Emergence. Ecology, 1989, 70, 1639-1644.	3.2	63
144	Does Foliage Damage Influence Predation on the Insect Herbivores of Birch?. Ecology, 1988, 69, 434-445.	3.2	90

#	Article	IF	CITATIONS
145	Barriers to movement and the response of herbivores to alternative cropping patterns. Oecologia, 1987, 71, 457-460.	2.0	34
146	Variance in search time: Do groups always reduce risk?. Animal Behaviour, 1986, 34, 289-291.	1.9	2
147	The effects of foliage damage on casebearing moth larvae, <i>Coleophora serratella</i> , feeding on birch. Ecological Entomology, 1986, 11, 241-250.	2.2	67
148	A Mechanistic Interpretation of Prey Selection by Anax junius Larvae (Odonata: Aeschnidae). Ecology, 1985, 66, 1699-1705.	3.2	61