João C R Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1384382/publications.pdf

Version: 2024-02-01

58 papers 1,560 citations

331670 21 h-index 36 g-index

60 all docs

60 does citations

60 times ranked

1850 citing authors

#	Article	IF	CITATIONS
1	Toll-Like Receptor Evolution: Does Temperature Matter?. Frontiers in Immunology, 2022, 13, 812890.	4.8	9
2	Domain-Dependent Evolution Explains Functional Homology of Protostome and Deuterostome Complement C3-Like Proteins. Frontiers in Immunology, 2022, 13, 840861.	4.8	1
3	PACAP/GCGa Is an Important Modulator of the Amphioxus CNS-Hatschek's Pit Axis, the Homolog of the Vertebrate Hypothalamic-Pituitary Axis in the Basal Chordates. Frontiers in Endocrinology, 2022, 13, 850040.	3.5	1
4	Fish lysozyme gene family evolution and divergent function in early development. Developmental and Comparative Immunology, 2021, 114, 103772.	2.3	39
5	Evolution and Potential Function in Molluscs of Neuropeptide and Receptor Homologues of the Insect Allatostatins. Frontiers in Endocrinology, 2021, 12, 725022.	3.5	5
6	A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role. Molecular Ecology, 2021, 30, 6642-6658.	3.9	2
7	Stanniocalcin-1 protein expression profile and mechanisms in proliferation and cell death pathways in prostate cancer. Molecular and Cellular Endocrinology, 2020, 502, 110659.	3. 2	3
8	Thyroid hormone receptor: A new player in epinephrine-induced larval metamorphosis of the hard-shelled mussel. General and Comparative Endocrinology, 2020, 287, 113347.	1.8	11
9	Corticotropin-Releasing Hormone (CRH) Gene Family Duplications in Lampreys Correlate With Two Early Vertebrate Genome Doublings. Frontiers in Neuroscience, 2020, 14, 672.	2.8	18
10	Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biological Reviews, 2020, 95, 1812-1837.	10.4	63
11	The calcitonin-like system is an ancient regulatory system of biomineralization. Scientific Reports, 2020, 10, 7581.	3.3	12
12	Tracing the Origins of the Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP). Frontiers in Neuroscience, 2020, 14, 366.	2.8	15
13	Holothurians have a reduced GPCR and odorant receptor-like repertoire compared to other echinoderms. Scientific Reports, 2020, 10, 3348.	3.3	16
14	A Blood-Free Diet to Rear Anopheline Mosquitoes. Journal of Visualized Experiments, 2020, , .	0.3	3
15	Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts. Biochimie, 2020, 171 - 172 , 72 - 78 .	2.6	14
16	Dilution of Seawater Affects the Ca2 + Transport in the Outer Mantle Epithelium of Crassostrea gigas. Frontiers in Physiology, 2020, $11,1.$	2.8	170
17	Specific Evolution and Gene Family Expansion of Complement 3 and Regulatory Factor H in Fish. Frontiers in Immunology, 2020, 11, 568631.	4.8	21
18	Evolution and diversity of alpha-carbonic anhydrases in the mantle of the Mediterranean mussel (Mytilus galloprovincialis). Scientific Reports, 2019, 9, 10400.	3.3	21

#	Article	IF	CITATIONS
19	Two toll-like receptors identified in the mantle of Mytilus coruscus are abundant in haemocytes. Fish and Shellfish Immunology, 2019, 90, 134-140.	3.6	13
20	Persistence of the ABCC6 genes and the emergence of the bony skeleton in vertebrates. Scientific Reports, 2018, 8, 6027.	3.3	7
21	Evolution of the glucagon-like system across fish. General and Comparative Endocrinology, 2018, 264, 113-130.	1.8	9
22	Fresh-blood-free diet for rearing malaria mosquito vectors. Scientific Reports, 2018, 8, 17807.	3.3	18
23	Duplication of Dio3 genes in teleost fish and their divergent expression in skin during flatfish metamorphosis. General and Comparative Endocrinology, 2017, 246, 279-293.	1.8	14
24	Thermal imprinting modifies adult stress and innate immune responsiveness in the teleost sea bream. Journal of Endocrinology, 2017, 233, 381-394.	2.6	19
25	Chronic stress impairs the local immune response during cutaneous repair in gilthead sea bream (Sparus aurata, L.). Molecular Immunology, 2017, 87, 267-283.	2.2	24
26	Cover Image, Volume 85, Issue 2. Proteins: Structure, Function and Bioinformatics, 2017, 85, C1-C1.	2.6	0
27	Molecular cloning and functional characterization of a monoterpene synthase isolated from the aromatic wild shrub Thymus albicans. Journal of Plant Physiology, 2017, 218, 35-44.	3.5	10
28	Evolution of the angiopoietin-like gene family in teleosts and their role in skin regeneration. BMC Evolutionary Biology, 2017, 17, 14.	3.2	24
29	Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensity. Proteins: Structure, Function and Bioinformatics, 2017, 85, 242-255.	2.6	15
30	Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages. Journal of Molecular Endocrinology, 2016, 57, 73-86.	2.5	52
31	Allatostatin-type A, kisspeptin and galanin GPCRs and putative ligands as candidate regulatory factors of mantle function. Marine Genomics, 2016, 27, 25-35.	1.1	21
32	Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes. PLoS ONE, 2015, 10, e0130347.	2.5	29
33	STC1 interference on calcitonin family of receptors signaling during osteoblastogenesis via adenylate cyclase inhibition. Molecular and Cellular Endocrinology, 2015, 403, 78-87.	3.2	10
34	PACAP system evolution and its role in melanophore function in teleost fish skin. Molecular and Cellular Endocrinology, 2015, 411, 130-145.	3.2	13
35	Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs. PLoS ONE, 2014, 9, e92220.	2.5	29
36	New insights into the evolution of vertebrate CRH (corticotropin-releasing hormone) and invertebrate DH44 (diuretic hormone 44) receptors in metazoans. General and Comparative Endocrinology, 2014, 209, 162-170.	1.8	36

#	Article	IF	CITATIONS
37	Comparative evolution of peptide hormone-binding GPCRs: A route to understanding functional complexity. General and Comparative Endocrinology, 2014, 209, 1-2.	1.8	8
38	Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand. General and Comparative Endocrinology, 2014, 209, 82-92.	1.8	8
39	Identification of novel phospholipase A2 group IX members in metazoans. Biochimie, 2013, 95, 1534-1543.	2.6	8
40	Feeding and the Rhodopsin Family G-Protein Coupled Receptors in Nematodes and Arthropods. Frontiers in Endocrinology, 2012, 3, 157.	3.5	32
41	Conservation of group XII phospholipase A2 from bacteria to human. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2012, 7, 340-350.	1.0	6
42	Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evolutionary Biology, 2012, 12, 110.	3.2	74
43	Conserved domains and evolution of secreted phospholipases A ₂ . FEBS Journal, 2012, 279, 636-649.	4.7	27
44	Four stanniocalcin genes in teleost fish: Structure, phylogenetic analysis, tissue distribution and expression during hypercalcemic challenge. General and Comparative Endocrinology, 2012, 175, 344-356.	1.8	19
45	Divergence of duplicate POMC genes in gilthead sea bream Sparus auratus. General and Comparative Endocrinology, 2011, 173, 396-404.	1.8	27
46	The serendipitous origin of chordate secretin peptide family members. BMC Evolutionary Biology, 2010, 10, 135.	3.2	62
47	Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken. BMC Evolutionary Biology, 2010, 10, 373.	3.2	34
48	Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics, 2010, 11, 362.	2.8	160
49	Evolutionary Insights from Fish Transthyretin. , 2009, , 59-75.		5
50	PACAP, VIP and their receptors in the metazoa: Insights about the origin and evolution of the ligand–receptor pair. Peptides, 2007, 28, 1902-1919.	2.4	44
51	Persistence of duplicated PAC1 receptors in the teleost, Sparus auratus. BMC Evolutionary Biology, 2007, 7, 221.	3.2	21
52	Evolution of secretin family GPCR members in the metazoa. BMC Evolutionary Biology, 2006, 6, 108.	3.2	110
53	Comparative Study of Family 2 GPCRs inFugu rubripes. Annals of the New York Academy of Sciences, 2005, 1040, 257-260.	3.8	3
54	The secretin G-protein-coupled receptor family: teleost receptors. Journal of Molecular Endocrinology, 2005, 34, 753-765.	2.5	32

#	Article	IF	CITATIONS
55	Duplicated receptors for VIP and PACAP (VPAC1R and PAC1R) in a teleost fish, Fugu rubripes. Journal of Molecular Endocrinology, 2004, 33, 411-428.	2.5	28
56	Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution. Journal of Experimental Biology, 2004, 207, 1217-1227.	1.7	50
57	Isolation and Characterisation of the Corticotropin Releasing Factor Receptor 1 (CRFR1) Gene in a Teleost Fish, Fugu rubripes. DNA Sequence, 2003, 14, 215-218.	0.7	22
58	Genomic Characterisation of Putative Growth Hormone Releasing Hormone (GHRH) Receptor Genes in the Teleost Fish Fugu rubripes. DNA Sequence, 2003, 14, 129-133.	0.7	10