Hanna Jokinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1383926/publications.pdf Version: 2024-02-01

HANNA LOKINEN

#	Article	IF	CITATIONS
1	Synergistic associations of cognitive and motor impairments with functional outcome in covert cerebral small vessel disease. European Journal of Neurology, 2022, 29, 158-167.	3.3	10
2	Status of Clinical Neuropsychology Training in Finland. Frontiers in Psychology, 2022, 13, 860635.	2.1	0
3	Post-stroke dementia and permanent institutionalization. Journal of the Neurological Sciences, 2021, 421, 117307.	0.6	9
4	Unilateral Stroke: Computer-based Assessment Uncovers Non-Lateralized and Contralesional Visuoattentive Deficits. Journal of the International Neuropsychological Society, 2021, 27, 959-969.	1.8	6
5	Associations of cognitive reserve and psychological resilience with cognitive functioning in subjects with cerebral white matter hyperintensities. European Journal of Neurology, 2021, 28, 2622-2630.	3.3	12
6	ESO Guideline on covert cerebral small vessel disease. European Stroke Journal, 2021, 6, CXI-CLXII.	5.5	68
7	ESO Guideline on covert cerebral small vessel disease. European Stroke Journal, 2021, 6, IV-IV.	5.5	14
8	A novel CT-based automated analysis method provides comparable results with MRI in measuring brain atrophy and white matter lesions. Neuroradiology, 2021, 63, 2035-2046.	2.2	6
9	Post-Stroke Cognitive Impairment is Frequent After Infra-Tentorial Infarct. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 106108.	1.6	3
10	Computer-Based Assessment: Dual-Task Outperforms Large-Screen Cancellation Task in Detecting Contralesional Omissions. Frontiers in Psychology, 2021, 12, 790438.	2.1	2
11	Global Burden of Small Vessel Disease–Related Brain Changes on MRI Predicts Cognitive and Functional Decline. Stroke, 2020, 51, 170-178.	2.0	115
12	The influence of diversity on the measurement of functional impairment: An international validation of the Amsterdam IADL Questionnaire in eight countries. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12021.	2.4	15
13	Dual-Task in Large Perceptual Space Reveals Subclinical Hemispatial Neglect. Journal of the International Neuropsychological Society, 2020, 26, 993-1005.	1.8	9
14	Evaluating severity of white matter lesions from computed tomography images with convolutional neural network. Neuroradiology, 2020, 62, 1257-1263.	2.2	8
15	Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology, 2019, 93, e2257-e2271.	1.1	117
16	Executive function subdomains are associated with postâ€stroke functional outcome and permanent institutionalization. European Journal of Neurology, 2019, 26, 546-552.	3.3	33
17	Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimer's and Dementia, 2018, 14, 280-292.	0.8	246
18	STROKOG (stroke and cognition consortium): An international consortium to examine the epidemiology, diagnosis, and treatment of neurocognitive disorders in relation to cerebrovascular disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 7, 11-23.	2.4	41

HANNA JOKINEN

#	Article	IF	CITATIONS
19	The Vascular Impairment of Cognition Classification Consensus Study. Alzheimer's and Dementia, 2017, 13, 624-633.	0.8	143
20	Cognitive reserve moderates long-term cognitive and functional outcome in cerebral small vessel disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1296-1302.	1.9	45
21	Postâ€ s troke cognitive impairment is common even after successful clinical recovery. European Journal of Neurology, 2015, 22, 1288-1294.	3.3	298
22	Early-Stage White Matter Lesions Detected by Multispectral MRI Segmentation Predict Progressive Cognitive Decline. Frontiers in Neuroscience, 2015, 9, 455.	2.8	21
23	Poststroke cognitive impairment and dementia: prevalence, diagnosis, and treatment. Degenerative Neurological and Neuromuscular Disease, 2014, 4, 21.	1.3	25
24	Diffusion changes predict cognitive and functional outcome: The <scp>LADIS</scp> study. Annals of Neurology, 2013, 73, 576-583.	5.3	66
25	Postâ€stroke delirium in relation to dementia and longâ€ŧerm mortality. International Journal of Geriatric Psychiatry, 2012, 27, 401-408.	2.7	48
26	White Matter Lesion Progression in LADIS. Stroke, 2012, 43, 2643-2647.	2.0	88
27	Educational History Is an Independent Predictor of Cognitive Deficits and Long-Term Survival in Postacute Patients With Mild to Moderate Ischemic Stroke. Stroke, 2012, 43, 2931-2935.	2.0	73
28	Brain atrophy accelerates cognitive decline in cerebral small vessel disease. Neurology, 2012, 78, 1785-1792.	1.1	125
29	Callosal tissue loss parallels subtle decline in psychomotor speed. A longitudinal quantitative MRI study. The LADIS Study. Neuropsychologia, 2012, 50, 1650-1655.	1.6	17
30	Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: A 3-year follow-up of the LADIS study cohort. Journal of the Neurological Sciences, 2011, 307, 100-105.	0.6	57
31	2001–2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease?. Cerebrovascular Diseases, 2011, 32, 577-588.	1.7	258
32	Incident lacunes influence cognitive decline. Neurology, 2011, 76, 1872-1878.	1.1	183
33	Corpus Callosum Tissue Loss and Development of Motor and Global Cognitive Impairment: The LADIS Study. Dementia and Geriatric Cognitive Disorders, 2011, 32, 279-286.	1.5	24
34	Depression–Executive Dysfunction Syndrome Relates to Poor Poststroke Survival. American Journal of Geriatric Psychiatry, 2010, 18, 1007-1016.	1.2	26
35	Neuropsychological Predictors of Dementia in a Three-Year Follow-Up Period: Data from the LADIS Study. Dementia and Geriatric Cognitive Disorders, 2010, 29, 325-334.	1.5	25
36	Poststroke dementia predicts poor survival in long-term follow-up: influence of prestroke cognitive decline and previous stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 865-870.	1.9	49

Hanna Jokinen

#	Article	IF	CITATIONS
37	MRI-Defined Subcortical Ischemic Vascular Disease: Baseline Clinical and Neuropsychological Findings. Cerebrovascular Diseases, 2009, 27, 336-344.	1.7	78
38	Longitudinal Cognitive Decline in Subcortical Ischemic Vascular Disease – The LADIS Study. Cerebrovascular Diseases, 2009, 27, 384-391.	1.7	167
39	Cognitive impairment predicts poststroke death in long-term follow-up. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 1230-1235.	1.9	103
40	Comparison of the Alzheimer's Disease Assessment Scale Cognitive Subscale and the Vascular Dementia Assessment Scale in Differentiating Elderly Individuals with Different Degrees of White Matter Changes. Dementia and Geriatric Cognitive Disorders, 2007, 24, 73-81.	1.5	45
41	Clinical significance of corpus callosum atrophy in a mixed elderly population. Neurobiology of Aging, 2007, 28, 955-963.	3.1	67
42	White Matter Lesions Are Related to Impaired Instrumental Activities of Daily Living Poststroke. Journal of Stroke and Cerebrovascular Diseases, 2007, 16, 251-258.	1.6	34
43	Cognitive profile of subcortical ischaemic vascular disease. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 28-33.	1.9	125
44	Corpus callosum atrophy is associated with mental slowing and executive deficits in subjects with age-related white matter hyperintensities: the LADIS Study. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 491-496.	1.9	90
45	White matter hyperintensities as a predictor of neuropsychological deficits post-stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1229-1233.	1.9	112
46	Medial temporal lobe atrophy and memory deficits in elderly stroke patients. European Journal of Neurology, 2004, 11, 825-832.	3.3	28