Roy N D'souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1383176/publications.pdf Version: 2024-02-01

ROV N D'SOUZA

#	Article	IF	CITATIONS
1	Investigating the interaction between dietary polyphenols, the SARS CoV-2 spike protein and the ACE-2 receptor. Food and Function, 2022, 13, 8038-8046.	4.6	6
2	Cocoa origin classifiability through LC-MS data: A statistical approach for large and long-term datasets. Food Research International, 2021, 140, 109983.	6.2	7
3	Review on Cocoa Lipidomics – State of Knowledge and Future Needs. , 2021, , 136-154.		1
4	"Thermal Peroxidation―of Dietary Pentapeptides Yields N-Terminal 1,2-Dicarbonyls. Frontiers in Nutrition, 2021, 8, 663233.	3.7	0
5	Heat induced hydrolytic cleavage of the peptide bond in dietary peptides and proteins in food processing. Food Chemistry, 2021, 357, 129621.	8.2	13
6	HPLC-MS-based design of experiments approach on cocoa roasting. Food Chemistry, 2021, 360, 129694.	8.2	3
7	LC-MS based metabolomic approach for the efficient identification and relative quantification of bioavailable cocoa phenolics in human urine. Food Chemistry, 2021, 364, 130198.	8.2	6
8	Experimentally modelling cocoa bean fermentation reveals key factors and their influences. Food Chemistry, 2020, 302, 125335.	8.2	31
9	Monitoring the changes in low molecular weight carbohydrates in cocoa beans during spontaneous fermentation: A chemometric and kinetic approach. Food Research International, 2020, 128, 108865.	6.2	10
10	LC-MS/MS based molecular networking approach for the identification of cocoa phenolic metabolites in human urine. Food Research International, 2020, 132, 109119.	6.2	27
11	Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Research International, 2020, 133, 109122.	6.2	16
12	Investigating time dependent cocoa bean fermentation by ESI-FT-ICR mass spectrometry. Food Research International, 2020, 133, 109209.	6.2	7
13	Novel Amadori and Heyns compounds derived from short peptides found in dried cocoa beans. Food Research International, 2020, 133, 109164.	6.2	18
14	Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Food Research International, 2019, 126, 108544.	6.2	31
15	Identification of Products from Thermal Degradation of Tryptophan Containing Pentapeptides: Oxidation and Decarboxylation. Journal of Agricultural and Food Chemistry, 2019, 67, 7448-7454.	5.2	9
16	Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 2019, 121, 217-228.	6.2	21
17	Analysis of minor low molecular weight carbohydrates in cocoa beans by chromatographic techniques coupled to mass spectrometry. Journal of Chromatography A, 2019, 1584, 135-143.	3.7	15
18	Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food Chemistry, 2019, 278, 786-794.	8.2	34

Roy N D'souza

#	Article	IF	CITATIONS
19	Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding. Journal of Physical Chemistry B, 2018, 122, 4445-4456.	2.6	10
20	Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Research International, 2018, 109, 506-516.	6.2	51
21	Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data. Food Research International, 2018, 109, 387-402.	6.2	65
22	Profiling, quantification and classification of cocoa beans based on chemometric analysis of carbohydrates using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry, 2018, 258, 284-294.	8.2	41
23	Über die Chemie der Schokoladenherstellung. Nachrichten Aus Der Chemie, 2018, 66, 965-970.	0.0	2
24	Two Orders of Magnitude Variation of Diffusion-Enhanced Förster Resonance Energy Transfer in Polypeptide Chains. Polymers, 2018, 10, 1079.	4.5	2
25	Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 2018, 111, 137-147.	6.2	45
26	Variation of triacylglycerol profiles in unfermented and dried fermented cocoa beans of different origins. Food Research International, 2018, 111, 361-370.	6.2	24
27	Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 2017, 99, 550-559.	6.2	74
28	Biochemical fate of vicilin storage protein during fermentation and drying of cocoa beans. Food Research International, 2016, 90, 53-65.	6.2	33
29	Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations. Food Research International, 2016, 89, 764-772.	6.2	30
30	Fourier transform ion cyclotron resonance mass spectrometrical analysis of raw fermented cocoa beans of Cameroon and Ivory Coast origin. Food Research International, 2014, 64, 958-961.	6.2	20
31	The role of ligands on protein retention in adsorption chromatography: A surface energetics approach. Journal of Separation Science, 2014, 37, 618-624.	2.5	10
32	Investigation of isomeric flavanol structures in black tea thearubigins using ultraperformance liquid chromatography coupled to hybrid quadrupole/ion mobility/time of flight mass spectrometry. Journal of Mass Spectrometry, 2014, 49, 1086-1095.	1.6	29
33	Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC–MSn. Food Research International, 2014, 63, 353-359.	6.2	46
34	Identification and characterization of proanthocyanidins of 16 members of the <i>Rhododendron</i> genus (<i>Ericaceae</i>) by tandem LC–MS. Journal of Mass Spectrometry, 2012, 47, 502-515.	1.6	136