Marlene Rabinovitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382798/publications.pdf

Version: 2024-02-01

141 papers 17,122 citations

20817 60 h-index 127 g-index

156 all docs

156 does citations

156 times ranked

16321 citing authors

#	Article	IF	CITATIONS
1	Endogenous Retroviral Elements Generate Pathologic Neutrophils in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1019-1034.	5.6	10
2	KMT2D-NOTCH Mediates Coronary Abnormalities in Hypoplastic Left Heart Syndrome. Circulation Research, 2022, 131, 280-282.	4.5	3
3	PPAR \hat{I}^3 -p53-Mediated Vasculoregenerative Program to Reverse Pulmonary Hypertension. Circulation Research, 2021, 128, 401-418.	4.5	41
4	ALDH1A3 Coordinates Metabolism With Gene Regulation in Pulmonary Arterial Hypertension. Circulation, 2021, 143, 2074-2090.	1.6	34
5	iPSC–endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Science Translational Medicine, 2021, 13, .	12.4	17
6	Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest, 2021, 160, 1442-1458.	0.8	17
7	Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. Journal of Experimental Medicine, 2021, 218, .	8.5	139
8	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	8.2	38
9	Monocyte released HERV-K dUTPase engages TLR4 and MCAM causing endothelial mesenchymal transition. JCI Insight, 2021, 6, .	5.0	13
10	Computational simulation-derived hemodynamic and biomechanical properties of the pulmonary arterial tree early in the course of ventricular septal defects. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2471-2489.	2.8	8
11	Targeted proteomics of right heart adaptation to pulmonary arterial hypertension. European Respiratory Journal, 2021, 57, 2002428.	6.7	16
12	Role of endothelial cells in pulmonary fibrosis via SREBP2 activation. JCI Insight, 2021, 6, .	5.0	21
13	Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell, 2020, 27, 574-589.e8.	11.1	89
14	Patient-Specific Induced Pluripotent Stem Cells Implicate Intrinsic Impaired Contractility in Hypoplastic Left Heart Syndrome. Circulation, 2020, 142, 1605-1608.	1.6	33
15	Landscape of cohesin-mediated chromatin loops in the human genome. Nature, 2020, 583, 737-743.	27.8	134
16	Cellular senescence impairs the reversibility of pulmonary arterial hypertension. Science Translational Medicine, 2020, 12, .	12.4	74
17	Clinical trial in a dish using iPSCs shows lovastatin improves endothelial dysfunction and cellular cross-talk in LMNA cardiomyopathy. Science Translational Medicine, 2020, 12, .	12.4	56
18	Image-based scaling laws for somatic growth and pulmonary artery morphometry from infancy to adulthood. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H432-H442.	3.2	7

#	Article	IF	CITATIONS
19	Remodeling of active endothelial enhancers is associated with aberrant gene-regulatory networks in pulmonary arterial hypertension. Nature Communications, 2020, 11, 1673.	12.8	60
20	Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Research, 2020, 46, 101803.	0.7	10
21	Micro <scp>RNA</scp> â€483 amelioration of experimental pulmonary hypertension. EMBO Molecular Medicine, 2020, 12, e11303.	6.9	35
22	Phenotypically Silent Bone Morphogenetic Protein Receptor 2 Mutations Predispose Rats to Inflammation-Induced Pulmonary Arterial Hypertension by Enhancing the Risk for Neointimal Transformation. Circulation, 2019, 140, 1409-1425.	1.6	54
23	PPARÎ ³ Interaction with UBR5/ATMIN Promotes DNA Repair to Maintain Endothelial Homeostasis. Cell Reports, 2019, 26, 1333-1343.e7.	6.4	54
24	Discovery of Distinct Immune Phenotypes Using Machine Learning in Pulmonary Arterial Hypertension. Circulation Research, 2019, 124, 904-919.	4.5	141
25	Parameters associated with outcome in pediatric patients with congenital heart disease and pulmonary hypertension subjected to combined vasodilator and surgical treatments. Pulmonary Circulation, 2019, 9, 1-13.	1.7	9
26	Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancerâ€like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulmonary Circulation, 2019, 9, 1-15.	1.7	23
27	Inflammatory Basis of Pulmonary Arterial Hypertension. Anesthesiology, 2019, 131, 898-907.	2.5	20
28	Smooth Muscle Contact Drives Endothelial Regeneration by BMPR2-Notch1–Mediated Metabolic and Epigenetic Changes. Circulation Research, 2019, 124, 211-224.	4.5	78
29	Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients. Biomechanics and Modeling in Mechanobiology, 2019, 18, 779-796.	2.8	38
30	Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. European Respiratory Journal, 2019, 53, 1801887.	6.7	776
31	Dominant Role for Regulatory T Cells in Protecting Females Against Pulmonary Hypertension. Circulation Research, 2018, 122, 1689-1702.	4.5	97
32	Right ventricular stroke work correlates with outcomes in pediatric pulmonary arterial hypertension. Pulmonary Circulation, 2018, 8, 1-9.	1.7	16
33	The Role of Neutrophils and Neutrophil Elastase in Pulmonary Arterial Hypertension. Frontiers in Medicine, 2018, 5, 217.	2.6	61
34	A pro-con debate: current controversies in PAH pathogenesis at the American Thoracic Society International Conference in 2017. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L502-L516.	2.9	13
35	Elafin Treatment Rescues EGFR-Klf4 Signaling and Lung Cell Survival in Ventilated Newborn Mice. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 623-634.	2.9	21
36	Enhancing Insights into Pulmonary Vascular Disease through a Precision Medicine Approach. A Joint NHLBI–Cardiovascular Medical Research and Education Fund Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1661-1670.	5.6	59

#	Article	IF	CITATIONS
37	Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor- \hat{l}^2 in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1559-1569.	2.4	41
38	Right Heart End-Systolic Remodeling Index Strongly Predicts Outcomes in Pulmonary Arterial Hypertension. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	72
39	Patient-Specific iPSC-Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in BMPR2 Mutation Carriers. Cell Stem Cell, 2017, 20, 490-504.e5.	11.1	163
40	Long-term miR-29b suppression reduces aneurysm formation in a Marfan mouse model. Physiological Reports, 2017, 5, e13257.	1.7	18
41	Upregulation of Human Endogenous Retrovirus-K Is Linked to Immunity and Inflammation in Pulmonary Arterial Hypertension. Circulation, 2017, 136, 1920-1935.	1.6	44
42	Induced Pluripotent Stem Cell Model of Pulmonary Arterial Hypertension Reveals Novel Gene Expression and Patient Specificity. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 930-941.	5 . 6	72
43	Relation of Cytokine Profile to Clinical and Hemodynamic Features in Young Patients With Congenital Heart Disease and Pulmonary Hypertension. American Journal of Cardiology, 2017, 119, 119-125.	1.6	11
44	Translating Research into Improved Patient Care in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 583-595.	5 . 6	113
45	Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight, 2017, 2, e90427.	5.0	74
46	Serum Cytokines in Young Pediatric Patients with Congenital Cardiac Shunts and Altered Pulmonary Hemodynamics. Mediators of Inflammation, 2016, 2016, 1-9.	3.0	5
47	In Pulmonary Arterial Hypertension, Reduced BMPR2 Promotes Endothelial-to-Mesenchymal Transition via HMGA1 and Its Target Slug. Circulation, 2016, 133, 1783-1794.	1.6	183
48	NETs Activate Pulmonary Arterial Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2035-2037.	2.4	10
49	Loss of PPAR \hat{I}^3 in endothelial cells leads to impaired angiogenesis. Journal of Cell Science, 2016, 129, 693-705.	2.0	32
50	RNA Sequencing Analysis Detection of a Novel Pathway of Endothelial Dysfunction in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 356-366.	5.6	66
51	Elafin Reverses Pulmonary Hypertension via Caveolin-1–Dependent Bone Morphogenetic Protein Signaling. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1273-1286.	5.6	125
52	Enhanced Caspase Activity Contributes to Aortic Wall Remodeling and Early Aneurysm Development in a Murine Model of Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 146-154.	2.4	35
53	BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension. Cell Metabolism, 2015, 21, 596-608.	16.2	167
54	Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L464-L478.	2.9	26

#	Article	IF	CITATIONS
55	Leukotriene B ₄ Activates Pulmonary Artery Adventitial Fibroblasts in Pulmonary Hypertension. Hypertension, 2015, 66, 1227-1239.	2.7	62
56	Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. Journal of Experimental Medicine, 2014, 211, 263-280.	8.5	123
57	Inflammation and Immunity in the Pathogenesis of Pulmonary Arterial Hypertension. Circulation Research, 2014, 115, 165-175.	4.5	708
58	Targeting the Wnt signaling pathways in pulmonary arterial hypertension. Drug Discovery Today, 2014, 19, 1270-1276.	6.4	41
59	Repair of Congenital Heart Disease with Associated Pulmonary Hypertension in Children: What are the Minimal Investigative Procedures? Consensus Statement from the Congenital Heart Disease and Pediatric Task Forces, Pulmonary Vascular Research Institute (PVRI). Pulmonary Circulation, 2014, 4, 330-341.	1.7	44
60	Pathology, Pathobiology and Pathophysiology of Pulmonary Arterial Hypertension., 2014,, 2081-2101.		0
61	Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. Journal of the American College of Cardiology, 2013, 62, D4-D12.	2.8	465
62	Patchy deletion of Bmpr1a potentiates proximal pulmonary artery remodeling in mice exposed to chronic hypoxia. Biomechanics and Modeling in Mechanobiology, 2013, 12, 33-42.	2.8	10
63	Anticipated Classes of New Medications and Molecular Targets for Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 226-244.	1.7	40
64	Combining Induced Pluripotent Stem Cell with Next Generation Sequencing Technology to Gain New Insights into Pathobiology and Treatment of Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 153-155.	1.7	3
65	Blocking Macrophage Leukotriene B ₄ Prevents Endothelial Injury and Reverses Pulmonary Hypertension. Science Translational Medicine, 2013, 5, 200ra117.	12.4	203
66	FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. Journal of Clinical Investigation, 2013, 123, 3600-3613.	8.2	354
67	Loss of Adenomatous Poliposis Coli-α3 Integrin Interaction Promotes Endothelial Apoptosis in Mice and Humans. Circulation Research, 2012, 111, 1551-1564.	4.5	34
68	Molecular pathogenesis of pulmonary arterial hypertension. Journal of Clinical Investigation, 2012, 122, 4306-4313.	8.2	552
69	Rescuing the BMPR2 Pathway: How and Where Can We Intervene?. Advances in Pulmonary Hypertension, 2012, 11, 124-127.	0.1	0
70	Disruption of PPARγ/β-catenin–mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. Journal of Clinical Investigation, 2011, 121, 3735-3746.	8.2	217
71	Neutrophil Elastase Is Produced by Pulmonary Artery Smooth Muscle Cells and Is Linked to Neointimal Lesions. American Journal of Pathology, 2011, 179, 1560-1572.	3.8	82
72	Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology, 2011, 12, 222-230.	14.5	2,447

#	Article	IF	CITATIONS
73	Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females. Respiratory Research, 2011, 12, 159.	3.6	84
74	Regulatory T Cells Limit Vascular Endothelial Injury and Prevent Pulmonary Hypertension. Circulation Research, 2011, 109, 867-879.	4.5	248
7 5	Autophagic Protein LC3B Confers Resistance against Hypoxia-induced Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 649-658.	5.6	186
76	BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways. Journal of Cell Biology, 2011, 192, 171-188.	5.2	64
77	Emerging therapies for the treatment of pulmonary hypertension. Pediatric Critical Care Medicine, 2010, 11, S85-S90.	0.5	43
78	Pulmonary Circulation. , 2010, , 117-141.		5
79	PPARÎ ³ and the Pathobiology of Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2010, 661, 447-458.	1.6	56
80	LC3-mediated fibronectin mRNA translation induces fibrosarcoma growth by increasing connective tissue growth factor. Journal of Cell Science, 2009, 122, 1441-1451.	2.0	13
81	Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt–β-catenin and Wnt–RhoA–Rac1 pathways. Journal of Cell Biology, 2009, 184, 83-99.	5.2	194
82	Balloon occlusion pulmonary wedge angiography and lung biopsy assessment in the child with a congenital cardiac defect. Cardiology in the Young, 2009, 19, 13-15.	0.8	3
83	S100A4 and Bone Morphogenetic Protein-2 Codependently Induce Vascular Smooth Muscle Cell Migration via Phospho–Extracellular Signal-Regulated Kinase and Chloride Intracellular Channel 4. Circulation Research, 2009, 105, 639-647.	4.5	80
84	Inflammation, Growth Factors, and Pulmonary Vascular Remodeling. Journal of the American College of Cardiology, 2009, 54, S10-S19.	2.8	605
85	Developmental expression of LC3 $\hat{1}$ ± and $\hat{1}$ 2: Absence of fibronectin or autophagy phenotype in LC3 $\hat{1}$ 2 knockout mice. Developmental Dynamics, 2008, 237, 187-195.	1.8	93
86	Emerging Concepts and Translational Priorities in Pulmonary Arterial Hypertension. Circulation, 2008, 118, 1486-1495.	1.6	133
87	SM22α-targeted deletion of bone morphogenetic protein receptor 1A in mice impairs cardiac and vascular development, and influences organogenesis. Development (Cambridge), 2008, 135, 2981-2991.	2.5	58
88	Pulmonary arterial remodeling induced by a Th2 immune response. Journal of Experimental Medicine, 2008, 205, 361-372.	8.5	234
89	Smooth Muscle Protein 22α–Mediated Patchy Deletion of <i>Bmpr1a</i> Impairs Cardiac Contractility but Protects Against Pulmonary Vascular Remodeling. Circulation Research, 2008, 102, 380-388.	4.5	43
90	Reactivation of Î ³ HV68 induces neointimal lesions in pulmonary arteries of S100A4/Mts1-overexpressing mice in association with degradation of elastin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L276-L289.	2.9	38

#	Article	IF	Citations
91	An antiproliferative BMP-2/PPAR \hat{i}^3 /apoE axis in human and murine SMCs and its role in pulmonary hypertension. Journal of Clinical Investigation, 2008, 118, 1846-1857.	8.2	314
92	Molecular pathogenesis of pulmonary arterial hypertension. Journal of Clinical Investigation, 2008, 118, 2372-2379.	8.2	548
93	Nuclear Factor-κB Activation in Neonatal Mouse Lung Protects against Lipopolysaccharide-induced Inflammation. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 805-815.	5.6	7 3
94	Pathobiology of Pulmonary Hypertension. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 369-399.	22,4	210
95	Pulmonary Arterial Hypertension Is Linked to Insulin Resistance and Reversed by Peroxisome Proliferator–Activated Receptor-γ Activation. Circulation, 2007, 115, 1275-1284.	1.6	344
96	Point:Counterpoint: Chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. Journal of Applied Physiology, 2007, 103, 1449-1451.	2.5	24
97	In memory of Dr. Stella Van Praagh. Cardiovascular Pathology, 2006, 15, 359-360.	1.6	0
98	Cellular and Molecular Pathobiology of Pulmonary Hypertension Conference Summary. Chest, 2005, 128, 642S-646S.	0.8	16
99	Subversion of Cellular Autophagosomal Machinery by RNA Viruses. PLoS Biology, 2005, 3, e156.	5.6	717
100	Caspases from apoptotic myocytes degrade extracellular matrix: a novel remodeling paradigm. FASEB Journal, 2005, 19, 1848-1850.	0.5	33
101	Increased Fibulin-5 and Elastin in S100A4/Mts1 Mice With Pulmonary Hypertension. Circulation Research, 2005, 97, 596-604.	4.5	87
102	Interdependent Serotonin Transporter and Receptor Pathways Regulate S100A4/Mts1, a Gene Associated With Pulmonary Vascular Disease. Circulation Research, 2005, 97, 227-235.	4.5	147
103	Epidermal Growth Factor Receptor Blockade Mediates Smooth Muscle Cell Apoptosis and Improves Survival in Rats With Pulmonary Hypertension. Circulation, 2005, 112, 423-431.	1.6	237
104	S100A4/Mts1 Produces Murine Pulmonary Artery Changes Resembling Plexogenic Arteriopathy and Is Increased in Human Plexogenic Arteriopathy. American Journal of Pathology, 2004, 164, 253-262.	3.8	132
105	Overexpression of the Serine Elastase Inhibitor Elafin Protects Transgenic Mice From Hypoxic Pulmonary Hypertension. Circulation, 2002, 105, 516-521.	1.6	162
106	Hemodynamic unloading leads to regression of pulmonary vascular disease in rats. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 279-289.	0.8	58
107	Tumor Necrosis Factor-α Induces Fibronectin Synthesis in Coronary Artery Smooth Muscle Cells by a Nitric Oxide–Dependent Posttranscriptional Mechanism. Circulation Research, 2001, 89, 26-32.	4.5	12
108	Pathobiology of pulmonary hypertension: Impact on clinical management. Pediatric Cardiac Surgery Annual, 2000, 3, 63-81.	1.2	12

#	Article	IF	CITATIONS
109	Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nature Medicine, 2000, 6, 698-702.	30.7	355
110	Nitric oxide reduces vascular smooth muscle cell elastase activity through cGMPâ€mediated suppression of ERK phosphorylation and AML1B nuclear partitioning. FASEB Journal, 2000, 14, 805-814.	0.5	50
111	Gene Transfer of the Serine Elastase Inhibitor Elafin Protects Against Vein Graft Degeneration. Circulation, 2000, 102, .	1.6	7
112	Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. Journal of Clinical Investigation, 2000, 105, 21-34.	8.2	260
113	Nitric oxide mediates LCâ€3â€dependent regulation of fibronectin in ductus arteriosus intimal cushion formation. FASEB Journal, 1999, 13, 1423-1434.	0.5	24
114	EVE and beyond, retro and prospective insights. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L5-L12.	2.9	28
115	Regression of Hypertrophied Rat Pulmonary Arteries in Organ Culture Is Associated With Suppression of Proteolytic Activity, Inhibition of Tenascin-C, and Smooth Muscle Cell Apoptosis. Circulation Research, 1999, 84, 1223-1233.	4.5	123
116	Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin–dependent neointimal formation. Nature Medicine, 1999, 5, 176-182.	30.7	101
117	A serine elastase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nature Medicine, 1998, 4, 1383-1391.	30.7	70
118	Endothelial and serum factors which include apolipoprotein A1 tether elastin to smooth muscle cells inducing serine elastase activity via tyrosine kinase-mediated transcription and translation. Journal of Cellular Physiology, 1998, 174, 78-89.	4.1	33
119	AML1-like Transcription Factor Induces Serine Elastase Activity in Ovine Pulmonary Artery Smooth Muscle Cells. Circulation Research, 1998, 83, 252-263.	4.5	28
120	Microtubule Involvement in Translational Regulation of Fibronectin Expression by Light Chain 3 of Microtubule-Associated Protein 1 in Vascular Smooth Muscle Cells. Circulation Research, 1998, 83, 481-489.	4.5	34
121	$\hat{l}\pm 1$ -Proteinase Inhibitor Therapy for the Prevention of Chronic Lung Disease of Prematurity: A Randomized, Controlled Trial. Pediatrics, 1998, 101, 89-94.	2.1	61
122	Tissue-Specific and Developmental Regulation of Transforming Growth Factor-Î ² 1 Expression in Fetal Lamb Ductus Arteriosus Endothelial Cells. Pediatric Research, 1998, 44, 865-872.	2.3	7
123	Regulation of Tenascin-C, a Vascular Smooth Muscle Cell Survival Factor that Interacts with the $\hat{l}\pm v\hat{l}^23$ Integrin to Promote Epidermal Growth Factor Receptor Phosphorylation and Growth. Journal of Cell Biology, 1997, 139, 279-293.	5. 2	335
124	Functional Interplay between Interleukin-1 Receptor and Elastin Binding Protein Regulates Fibronectin Production in Coronary Artery Smooth Muscle Cells. Experimental Cell Research, 1996, 225, 122-131.	2.6	51
125	Exogenous leukocyte and endogenous elastases can mediate mitogenic activity in pulmonary artery smooth muscle cells by release of extracellular matrix-bound basic fibroblast growth factor. Journal of Cellular Physiology, 1996, 166, 495-505.	4.1	129
126	Tenascin-C Is Induced With Progressive Pulmonary Vascular Disease in Rats and Is Functionally Related to Increased Smooth Muscle Cell Proliferation. Circulation Research, 1996, 79, 1131-1142.	4.5	153

#	Article	IF	Citations
127	Reciprocal induction of tumor necrosis factorâ€Î± and interleukinâ€Î² activity mediates fibronectin synthesis in coronary artery smooth muscle cells. Journal of Cellular Physiology, 1995, 163, 19-29.	4.1	45
128	Lymphocyte transendothelial migration toward smooth muscle cells in interleukin-1 ?-stimulated co-cultures is related to fibronectin interactions with ?4?1 and ?5?1 integrins. Journal of Cellular Physiology, 1995, 164, 620-633.	4.1	24
129	VLA-4 and lymphocyte trafficking in immune-inflammatory states: novel therapeutic approaches in allograft arteriopathy. Seminars in Immunopathology, 1995, 16, 443-65.	4.0	2
130	ICAM-1 and VCAM-1 expression in accelerated cardiac allograft arteriopathy and myocardial rejection are influenced differently by cyclosporine a and tumour necrosis factor- \hat{l}_{\pm} blockade. Journal of Pathology, 1995, 176, 175-182.	4.5	22
131	Elastase and cell matrix interactions in the pathobiology of vascular disease. Pediatrics International, 1995, 37, 657-666.	0.5	17
132	$\hat{l}\pm 1$ -Antitrypsin Protects Neonatal Rats from Pulmonary Vascular and Parenchymal Effects of Oxygen Toxicity. Pediatric Research, 1994, 36, 763-770.	2.3	60
133	Serum-Induced vascular smooth muscle cell elastolytic activity through tyrosine kinase intracellular signalling. Journal of Cellular Physiology, 1994, 160, 121-131.	4.1	41
134	Increased Pulmonary Artery Elastolytic Activity in Adult Rats with Monocrotaline-induced Progressive Hypertensive Pulmonary Vascular Disease Compared with Infant Rats with Nonprogressive Disease. The American Review of Respiratory Disease, 1992, 146, 213-223.	2.9	116
135	Vascular smooth muscle cell detachment from elastin and migration through elastic laminae is promoted by chondroitin sulfate-induced "shedding―of the 67-kDa cell surface elastin binding protein. Experimental Cell Research, 1992, 203, 344-353.	2.6	99
136	Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Developmental Biology, 1991, 143, 235-247.	2.0	147
137	Oxygen-Related Prostaglandin Synthesis in Ductus Arteriosus and Other Vascular Cells. Pediatric Research, 1989, 26, 330-335.	2.3	33
138	Ventilatory predictors of pulmonary hypoplasia in congenital diaphragmatic hernia, confirmed by morphologic assessment. Journal of Pediatrics, 1987, 111, 423-431.	1.8	234
139	Pulmonary Toxicity of Monocrotaline Differs at Critical Periods of Lung Development. Pediatric Research, 1985, 19, 731-737.	2.3	51
140	Hyperoxia-Induced Pulmonary Vascular and Lung Abnormalities in Young Rats and Potential for Recovery. Pediatric Research, 1985, 19, 1059-1067.	2.3	66
141	Lung biopsy with frozen section as a diagnostic aid in patients with congenital heart defects. American Journal of Cardiology, 1981, 47, 77-84.	1.6	36