List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382468/publications.pdf Version: 2024-02-01

KIIDT F HALISED

#	Article	IF	CITATIONS
1	Molecular Basis for Interactions of HIV and Drugs of Abuse. Journal of Acquired Immune Deficiency Syndromes (1999), 2002, 31, S62-S69.	2.1	233
2	Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Clia, 2005, 50, 91-106.	4.9	204
3	Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. Journal of Psychopharmacology, 2000, 14, 222-227.	4.0	203
4	Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Research, 2000, 879, 42-49.	2.2	191
5	Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Research, 1987, 416, 157-161.	2.2	165
6	Synaptic Dysfunction in the Hippocampus Accompanies Learning and Memory Deficits in Human Immunodeficiency Virus Type-1 Tat Transgenic Mice. Biological Psychiatry, 2013, 73, 443-453.	1.3	146
7	HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia, 2006, 53, 132-146.	4.9	144
8	Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIVâ€I tat transgenic mice. Glia, 2008, 56, 1414-1427.	4.9	134
9	Interactive Comorbidity between Opioid Drug Abuse and HIV-1 Tat. American Journal of Pathology, 2010, 177, 1397-1410.	3.8	133
10	Endogenous opioid systems and the regulation of dendritic growth and spine formation. Journal of Comparative Neurology, 1989, 281, 13-22.	1.6	132
11	μ-Opioid receptor-induced Ca2+ mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca2+-dependent mechanism. Brain Research, 1996, 720, 191-203.	2.2	122
12	Rat Nucleus Accumbens Core Astrocytes Modulate Reward and the Motivation to Self-Administer Ethanol after Abstinence. Neuropsychopharmacology, 2014, 39, 2835-2845.	5.4	115
13	Opioid system diversity in developing neurons, astroglia, and oligodendroglia in the subventricular zone and striatum: Impact on gliogenesis in vivo. Glia, 2001, 36, 78-88.	4.9	113
14	Apoptotic death of striatal neurons induced by human immunodeficiency virus-1 Tat and gp120: Differential involvement of caspase-3 and endonuclease G. Journal of NeuroVirology, 2004, 10, 141-151.	2.1	112
15	Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine. BMC Neuroscience, 2001, 2, 3.	1.9	110
16	Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin. Life Sciences, 1990, 46, 91-98.	4.3	108
17	In utero nicotine exposure causes persistent, genderâ€dependant changes in locomotor activity and sensitivity to nicotine in C57BI/6 mice. International Journal of Developmental Neuroscience, 2004, 22, 329-337.	1.6	106
18	Morphine Exacerbates HIV-1 Tat-Induced Cytokine Production in Astrocytes through Convergent Effects on [Ca2+]i, NF-κB Trafficking and Transcription. PLoS ONE, 2008, 3, e4093.	2.5	105

#	Article	IF	CITATIONS
19	Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia, 2009, 50, 629-645.	5.1	102
20	Prodynorphin Mutations Cause the Neurodegenerative Disorder Spinocerebellar Ataxia Type 23. American Journal of Human Genetics, 2010, 87, 593-603.	6.2	99
21	Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro: differential impact of 1¼ and 1´ receptor activation on proliferation and neurite elongation. European Journal of Neuroscience, 2000, 12, 1281-1293.	2.6	97
22	Morphine alters astrocyte growth in primary cultures of mouse glial cells: evidence for a direct effect of opiates on neural maturation. Developmental Brain Research, 1991, 60, 1-7.	1.7	94
23	Opiate Drug Use and the Pathophysiology of NeuroAIDS. Current HIV Research, 2012, 10, 435-452.	0.5	94
24	Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at Â-opioid receptor-expressing glia. Brain, 2011, 134, 3616-3631.	7.6	93
25	Regional, developmental, and cell cycle-dependent differences in ?, ?, and ?-opioid receptor expression among cultured mouse astrocytes. , 1998, 22, 249-259.		89
26	Pathobiology of dynorphins in trauma and disease. Frontiers in Bioscience - Landmark, 2005, 10, 216.	3.0	89
27	Morphine and HIVâ€Tat increase microglialâ€free radical production and oxidative stress: possible role in cytokine regulation. Journal of Neurochemistry, 2009, 108, 202-215.	3.9	87
28	Cellular localization of proenkephalin mRNA and enkephalin peptide products in cultured astrocytes. Brain Research, 1990, 522, 347-353.	2.2	86
29	HIV-1 neuropathogenesis: glial mechanisms revealed through substance abuse. Journal of Neurochemistry, 2007, 100, 567-586.	3.9	84
30	Endogenous opioid system in developing normal and jimpy oligodendrocytes: ? and ? opioid receptors mediate differential mitogenic and growth responses. , 1998, 22, 189-201.		81
31	HIVâ€1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia, 2009, 57, 194-206.	4.9	80
32	Toll-like Receptor Expression and Activation in Astroglia: Differential Regulation by HIV-1 Tat, gp120, and Morphine. Immunological Investigations, 2011, 40, 498-522.	2.0	80
33	Molecular targets of opiate drug abuse in neuro AIDS. Neurotoxicity Research, 2005, 8, 63-80.	2.7	78
34	Cellâ€specific actions of HIVâ€Tat and morphine on opioid receptor expression in glia. Journal of Neuroscience Research, 2008, 86, 2100-2110.	2.9	76
35	Increased vulnerability of ApoE4 neurons to HIV proteins and opiates: Protection by diosgenin and l-deprenyl. Neurobiology of Disease, 2006, 23, 109-119.	4.4	74
36	Effects of chronic HIV-1 Tat exposure in the CNS: heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Structure and Function, 2015, 220, 605-623.	2.3	74

#	Article	IF	CITATIONS
37	Chronic low-level expression of HIV-1 Tat promotes a neurodegenerative phenotype with aging. Scientific Reports, 2017, 7, 7748.	3.3	74
38	Interactive HIV-1 Tat and Morphine-Induced Synaptodendritic Injury Is Triggered through Focal Disruptions in Na+ Influx, Mitochondrial Instability, and Ca2+ Overload. Journal of Neuroscience, 2014, 34, 12850-12864.	3.6	73
39	Translocation of Dynorphin Neuropeptides across the Plasma Membrane. Journal of Biological Chemistry, 2005, 280, 26360-26370.	3.4	68
40	Glial Modulators as Potential Treatments of Psychostimulant Abuse. Advances in Pharmacology, 2014, 69, 1-69.	2.0	68
41	Transcriptional control of maladaptive and protective responses in alcoholics: A role of the NF-κB system. Brain, Behavior, and Immunity, 2011, 25, S29-S38.	4.1	66
42	Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. European Journal of Neuroscience, 2004, 19, 3171-3182.	2.6	65
43	Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathogens, 2019, 15, e1008249.	4.7	63
44	κ-Opioid receptor expression defines a phenotypically distinct subpopulation of astroglia: relationship to Ca2+ mobilization, development, and the antiproliferative effect of opioids. Brain Research, 1996, 737, 175-187.	2.2	60
45	Morphine Inhibits Purkinje Cell Survival and Dendritic Differentiation in Organotypic Cultures of the Mouse Cerebellum. Experimental Neurology, 1994, 130, 95-105.	4.1	57
46	Dynorphin A (1–13) Neurotoxicity in Vitro: Opioid and Non-Opioid Mechanisms in Mouse Spinal Cord Neurons. Experimental Neurology, 1999, 160, 361-375.	4.1	57
47	Regional Heterogeneity and Diversity in Cytokine and Chemokine Production by Astroglia: Differential Responses to HIV-1 Tat, gp120, and Morphine Revealed by Multiplex Analysis. Journal of Proteome Research, 2010, 9, 1795-1804.	3.7	57
48	Cytotoxic Effects of Dynorphins through Nonopioid Intracellular Mechanisms. Experimental Cell Research, 2001, 269, 54-63.	2.6	55
49	Prodynorphin storage and processing in axon terminals and dendrites. FASEB Journal, 2006, 20, 2124-2126.	0.5	54
50	HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. Journal of NeuroVirology, 2016, 22, 747-762.	2.1	53
51	Impact of Opiate–HIV-1 Interactions on Neurotoxic Signaling. Journal of NeuroImmune Pharmacology, 2006, 1, 98-105.	4.1	52
52	Opiates selectively increase intracellular calcium in developing type-1 astrocytes: role of calcium in morphine-induced morphologic differentiation. Developmental Brain Research, 1993, 76, 189-196.	1.7	51
53	HIV-Tat elicits microglial glutamate release: Role of NAPDH oxidase and the cystine–glutamate antiporter. Neuroscience Letters, 2010, 485, 233-236.	2.1	51
54	CCR2 mediates increases in glial activation caused by exposure to HIV-1 Tat and opiates. Journal of Neuroimmunology, 2006, 178, 9-16.	2.3	50

#	Article	IF	CITATIONS
55	Interactions of HIV and Drugs of Abuse. International Review of Neurobiology, 2014, 118, 231-313.	2.0	50
56	CCL5/RANTES Gene Deletion Attenuates Opioid-Induced Increases in Glial CCL2/MCP-1 Immunoreactivity and Activation in HIV-1 Tat-Exposed Mice. Journal of NeuroImmune Pharmacology, 2008, 3, 275-285.	4.1	48
57	Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. Journal of Neuroscience, 2017, 37, 5758-5769.	3.6	48
58	Morphine and gp120 Toxic Interactions in Striatal Neurons are Dependent on HIV-1 Strain. Journal of NeuroImmune Pharmacology, 2012, 7, 877-891.	4.1	47
59	Characterization of opioid-dependent glial development in dissociated and organotypic cultures of mouse central nervous system: critical periods and target specificity. Developmental Brain Research, 1991, 62, 245-255.	1.7	46
60	Morphine efficacy is altered in conditional HIV-1 Tat transgenic mice. European Journal of Pharmacology, 2012, 689, 96-103.	3.5	45
61	Androgen increases the number of cells in fetal mouse spinal cord cultures: implications for motoneuron survival. Brain Research, 1989, 485, 157-164.	2.2	44
62	RelB/p50 Complexes Regulate Cytokine-Induced YKL-40 Expression. Journal of Immunology, 2015, 194, 2862-2870.	0.8	43
63	5α-reduced progestogens ameliorate mood-related behavioral pathology, neurotoxicity, and microgliosis associated with exposure to HIV-1 Tat. Brain, Behavior, and Immunity, 2016, 55, 202-214.	4.1	42
64	Asymmetry of the Endogenous Opioid System in the Human Anterior Cingulate: a Putative Molecular Basis for Lateralization of Emotions and Pain. Cerebral Cortex, 2015, 25, 97-108.	2.9	41
65	CCR5 mediates HIV-1 Tat-induced neuroinflammation and influences morphine tolerance, dependence, and reward. Brain, Behavior, and Immunity, 2018, 69, 124-138.	4.1	41
66	Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System. Frontiers in Pediatrics, 2018, 5, 294.	1.9	40
67	HIV-1 Tat disrupts blood-brain barrier integrity and increases phagocytic perivascular macrophages and microglia in the dorsal striatum of transgenic mice. Neuroscience Letters, 2017, 640, 136-143.	2.1	39
68	A central role for glial CCR5 in directing the neuropathological interactions of HIV-1 Tat and opiates. Journal of Neuroinflammation, 2018, 15, 285.	7.2	39
69	Opioids Disrupt Ca2+Homeostasis and Induce Carbonyl Oxyradical Production in Mouse Astrocytesin Vitro:Transient Increases and Adaptation to Sustained Exposure. Experimental Neurology, 1998, 151, 70-76.	4.1	38
70	Opioids modulate cell division in the germinal zone of the late embryonic neocortex. European Journal of Neuroscience, 1999, 11, 2711-2719.	2.6	38
71	Structure–Activity Analysis of Dynorphin A Toxicity in Spinal Cord Neurons: Intrinsic Neurotoxicity of Dynorphin A and Its Carboxyl-Terminal, Nonopioid Metabolites. Experimental Neurology, 2001, 168, 78-87.	4.1	38
72	Connexinâ€purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation. FASEB Journal, 2017, 31, 2649-2660.	0.5	38

#	Article	IF	CITATIONS
73	βâ€Chemokine production by neural and glial progenitor cells is enhanced by HIVâ€1 Tat: effects on microglial migration. Journal of Neurochemistry, 2010, 114, 97-109.	3.9	37
74	Differential expression and HIV-1 regulation of μ-opioid receptor splice variants across human central nervous system cell types. Journal of NeuroVirology, 2012, 18, 181-190.	2.1	37
75	Androgen action in fetal mouse spinal cord cultures: metabolic and morphologic aspects. Brain Research, 1987, 406, 62-72.	2.2	36
76	Survival of Extraocular Muscle in Long-Term Organotypic Culture: Differential Influence of Appropriate and Inappropriate Motoneurons. Developmental Biology, 1993, 160, 39-50.	2.0	36
77	Endogenous opioids and oligodendroglial function: Possible autocrine/paracrine effects on cell survival and development. Clia, 2001, 35, 156-165.	4.9	36
78	A bivalent ligand targeting the putative mu opioid receptor and chemokine receptor CCR5 heterodimer: binding affinity versus functional activities. MedChemComm, 2013, 4, 847.	3.4	36
79	μ-Opioid receptor activation enhances DNA synthesis in immature oligodendrocytes. Brain Research, 1996, 743, 341-345.	2.2	35
80	Opposing actions of the EGF family and opioids: heparin binding-epidermal growth factor (HB-EGF) protects mouse cerebellar neuroblasts against the antiproliferative effect of morphine. Brain Research, 1998, 804, 87-94.	2.2	35
81	Effects of chronic expression of the HIV-induced protein, transactivator of transcription, on circadian activity rhythms in mice, with or without morphine. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1680-R1687.	1.8	34
82	Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Molecular Neurodegeneration, 2011, 6, 78.	10.8	34
83	Effects of HIV-1 Tat on Enteric Neuropathogenesis. Journal of Neuroscience, 2014, 34, 14243-14251.	3.6	33
84	HIV-1 Coinfection and Morphine Coexposure Severely Dysregulate Hepatitis C Virus-Induced Hepatic Proinflammatory Cytokine Release and Free Radical Production: Increased Pathogenesis Coincides with Uncoordinated Host Defenses. Journal of Virology, 2011, 85, 11601-11614.	3.4	32
85	Oligodendrocytes Are Targets of HIV-1 Tat: NMDA and AMPA Receptor-Mediated Effects on Survival and Development. Journal of Neuroscience, 2015, 35, 11384-11398.	3.6	32
86	A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5-μ-opioid receptor interactions between human astroglia and microglia. Aids, 2013, 27, 2181-2190.	2.2	31
87	Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization. Bioorganic and Medicinal Chemistry, 2016, 24, 5969-5987.	3.0	31
88	Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain. Neurobiology of Disease, 2016, 92, 124-136.	4.4	31
89	Alterations within the endogenous opioid system in mice with targeted deletion of the neutral endopeptidase (â€~enkephalinase') gene. Regulatory Peptides, 2000, 96, 53-58.	1.9	30
90	HIVâ€l alters neural and glial progenitor cell dynamics in the central nervous system: Coordinated response to opiates during maturation. Glia, 2012, 60, 1871-1887.	4.9	30

#	Article	IF	CITATIONS
91	Ligand-Gated Purinergic Receptors Regulate HIV-1 Tat and Morphine Related Neurotoxicity in Primary Mouse Striatal Neuron-Glia Co-Cultures. Journal of NeuroImmune Pharmacology, 2014, 9, 233-244.	4.1	30
92	Spatial and temporal integration of neurotransmitter signals in the development of neural circuitry. Neurochemistry International, 1991, 19, 17-24.	3.8	29
93	Morphine suppresses DNA synthesis in cultured murine astrocytes from cortex, hippocampus and striatum. Neuroscience Letters, 1993, 157, 1-3.	2.1	29
94	Neutral Endopeptidase Knockout Induces Hyperalgesia in a Model of Visceral Pain, an Effect Related to Bradykinin and Nitric Oxide. Journal of Molecular Neuroscience, 2002, 18, 129-134.	2.3	29
95	Selective vulnerability of cerebellar granule neuroblasts and their progeny to drugs with abuse liability. Cerebellum, 2003, 2, 184-195.	2.5	29
96	Reduced intraepidermal nerve fibre density, glial activation, and sensory changes in HIV type-1 Tat-expressing female mice: involvement of Tat during early stages of HIV-associated painful sensory neuropathy. Pain Reports, 2018, 3, e654.	2.7	28
97	Morphine regulates DNA synthesis in rat cerebellar neuroblasts in vitro. Developmental Brain Research, 1992, 70, 291-297.	1.7	27
98	Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology, 2015, 483, 185-202.	2.4	27
99	HIV-1 Tat and opioids act independently to limit antiretroviral brain concentrations and reduce blood–brain barrier integrity. Journal of NeuroVirology, 2019, 25, 560-577.	2.1	27
100	Differential expression of the alternatively spliced OPRM1 isoform μ-opioid receptor-1K in HIV-infected individuals. Aids, 2014, 28, 19-30.	2.2	26
101	Opioid and neuroHIV Comorbidity – Current and Future Perspectives. Journal of NeuroImmune Pharmacology, 2020, 15, 584-627.	4.1	26
102	Effect of nicotine on cerebellar granule neuron development. European Journal of Neuroscience, 2001, 13, 48-56.	2.6	25
103	Effects of HIV-1 Tat and Methamphetamine on Blood-Brain Barrier Integrity and Function <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
104	Lateralized Response of Dynorphin A Peptide Levels after Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 1785-1793.	3.4	23
105	Opiate Addiction Therapies and HIV-1 Tat: Interactive Effects on Glial [Ca ²⁺] _i , Oxyradical and Neuroinflammatory Chemokine Production and Correlative Neurotoxicity. Current HIV Research, 2015, 12, 424-434.	0.5	23
106	Characterization of cell-cell junction changes associated with the formation of a strong endothelial barrier. Tissue Barriers, 2018, 6, e1405774.	3.2	23
107	Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiology of Stress, 2020, 12, 100211.	4.0	23
108	Postnatal suppression of myomesin, muscle creatine kinase and the M-line in rat extraocular muscle. Journal of Experimental Biology, 2003, 206, 3101-3112.	1.7	21

#	Article	IF	CITATIONS
109	HIV-1-Tat Protein Inhibits SC35-mediated Tau Exon 10 Inclusion through Up-regulation of DYRK1A Kinase. Journal of Biological Chemistry, 2015, 290, 30931-30946.	3.4	21
110	Ontogeny of proenkephalin mRNA and enkephalin peptide expression in the cerebellar cortex of the rat: spatial and temporal patterns of expression follow maturational gradients in the external granular layer and in Purkinje cells. Developmental Brain Research, 1993, 76, 1-12.	1.7	20
111	Morphine does not affect astrocyte survival in developing primary mixed-glial cultures. Developmental Brain Research, 1993, 76, 293-298.	1.7	20
112	Chronic HIV-1 Tat exposure alters anterior cingulate cortico-basal ganglia-thalamocortical synaptic circuitry, associated behavioral control, and immune regulation in male mice. Brain, Behavior, & Immunity - Health, 2020, 5, 100077.	2.5	20
113	Effect of nicotine on cerebellar granule neuron development. European Journal of Neuroscience, 2001, 13, 48-56.	2.6	19
114	Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 96-105.	2.5	19
115	Productive infection of human neural progenitor cells by R5 tropic HIV-1. Aids, 2017, 31, 753-764.	2.2	19
116	Neutral endopeptidase and alcohol consumption, experiments in neutral endopeptidase-deficient mice. European Journal of Pharmacology, 2000, 397, 327-334.	3.5	18
117	GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Molecular and Cellular Neurosciences, 2015, 65, 11-20.	2.2	18
118	Conditional expression of HIVâ€1 tat in the mouse alters the onset and progression of tonic, inflammatory and neuropathic hypersensitivity in a sexâ€dependent manner. European Journal of Pain, 2020, 24, 1609-1623.	2.8	18
119	HIV and opiates dysregulate K+- Clâ^ cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiology of Disease, 2020, 141, 104878.	4.4	18
120	Co-localization of proenkephalin mRNA using cRNA probes and a cell-type-specific immunocytochemical marker for intact astrocytes in vitro. Journal of Neuroscience Methods, 1991, 36, 119-126.	2.5	17
121	Silencing the PTEN gene is protective against neuronal death induced by human immunodeficiency virus type 1 Tat. Journal of NeuroVirology, 2007, 13, 97-106.	2.1	16
122	HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system. Scientific Reports, 2016, 6, 31203.	3.3	16
123	Cell-type specific differences in antiretroviral penetration and the effects of HIV-1 Tat and morphine among primary human brain endothelial cells, astrocytes, pericytes, and microglia. Neuroscience Letters, 2019, 712, 134475.	2.1	16
124	Effects of <scp>HIV</scp> ″ Tat on oligodendrocyte viability are mediated by Ca <scp>MKII</scp> l²â€" <scp>GSK</scp> 3l² interactions. Journal of Neurochemistry, 2019, 149, 98-110.	3.9	16
125	Autoradiographic studies of cerebellar histogenesis in the premetamorphic bullfrog tadpole: I. Generation of the external granular layer. Journal of Comparative Neurology, 1987, 266, 234-246.	1.6	15
126	Morphine Enhances HIV-1SF162-Mediated Neuron Death and Delays Recovery of Injured Neurites. PLoS ONE, 2014, 9, e100196.	2.5	15

#	Article	IF	CITATIONS
127	Morphine and HIV-1 Tat interact to cause region-specific hyperphosphorylation of tau in transgenic mice. Neuroscience Letters, 2021, 741, 135502.	2.1	14
128	Expression of proenkephalin mRNA in developing cerebellar cortex of the rat: expression levels coincide with maturational gradients in Purkinje cells. Developmental Brain Research, 1991, 63, 63-69.	1.7	13
129	Cell-specific loss of κ-opioid receptors in oligodendrocytes of the dysmyelinating jimpy mouse. Neuroscience Letters, 2009, 451, 114-118.	2.1	13
130	PTEN gene silencing prevents HIV-1 gp120IIIB-induced degeneration of striatal neurons. Journal of NeuroVirology, 2011, 17, 41-49.	2.1	13
131	Ibudilast (AV411), and its AV1013 analog, reduce HIV-1 replication and neuronal death induced by HIV-1 and morphine. Aids, 2014, 28, 1409-1419.	2.2	13
132	Chronic HIV-1 Tat and HIV Reduce Rbfox3/NeuN: Evidence for Sex- Related Effects. Current HIV Research, 2015, 13, 10-20.	0.5	13
133	Differential Tolerance to FTY720-Induced Antinociception in Acute Thermal and Nerve Injury Mouse Pain Models: Role of Sphingosine-1-Phosphate Receptor Adaptation. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 509-518.	2.5	13
134	Escalating morphine dosing in HIV-1 Tat transgenic mice with sustained Tat exposure reveals an allostatic shift in neuroinflammatory regulation accompanied by increased neuroprotective non-endocannabinoid lipid signaling molecules and amino acids. Journal of Neuroinflammation, 2020, 17, 345.	7.2	13
135	HIV-1 Tat and Morphine Differentially Disrupt Pyramidal Cell Structure and Function and Spatial Learning in Hippocampal Area CA1: Continuous versus Interrupted Morphine Exposure. ENeuro, 2021, 8, ENEURO.0547-20.2021.	1.9	13
136	Simultaneous determination of intracellular concentrations of tenofovir, emtricitabine, and dolutegravir in human brain microvascular endothelial cells using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analytica Chimica Acta, 2019, 1056, 79-87.	5.4	11
137	Ultrastructural Studies on Purkinje Cell Maturation in the Cerebellum of the Frog Tadpole during Spontaneous and Thyroxine-Induced Metamorphosis. Brain, Behavior and Evolution, 1982, 20, 156-171.	1.7	10
138	Endogenous opioid systems and the growth of oligodendrocyte progenitors: Paradoxical increases in oligodendrogenesis as an indirect mechanism of opioid action. Glia, 1993, 9, 157-162.	4.9	10
139	Abnormal Ca2+ regulation in oligodendrocytes from the dysmyelinating jimpy mouse. Brain Research, 1999, 847, 332-337.	2.2	10
140	Restoration of KCC2 Membrane Localization in Striatal Dopamine D2 Receptor-Expressing Medium Spiny Neurons Rescues Locomotor Deficits in HIV Tat-Transgenic Mice. ASN Neuro, 2021, 13, 175909142110220.	2.7	9
141	HIV-1 Tat and morphine decrease murine inter-male social interactions and associated oxytocin levels in the prefrontal cortex, amygdala, and hypothalamic paraventricular nucleus. Hormones and Behavior, 2021, 133, 105008.	2.1	9
142	Autoradiographic studies of cerebellar histogenesis in the premetamorphic bullfrog tadpole: II. Formation of the interauricular granular band. Journal of Comparative Neurology, 1988, 269, 118-129.	1.6	8
143	Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. Journal of Medicinal Chemistry, 2021, 64, 7702-7723.	6.4	8
144	Granule cell development in the frog cerebellum during spontaneous and thyroxine-induced metamorphosis. Journal of Comparative Neurology, 1986, 253, 185-196.	1.6	7

#	Article	IF	CITATIONS
145	Bivalent Ligand Aiming Putative Mu Opioid Receptor and Chemokine Receptor CXCR4 Dimers in Opioid Enhanced HIV-1 Entry. ACS Medicinal Chemistry Letters, 2020, 11, 2318-2324.	2.8	7
146	Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Frontiers in Neuroscience, 2022, 16, .	2.8	7
147	Stellate cell development in the frog cerebellum during spontaneous and thyroxin-induced metamorphosis. Journal of Comparative Neurology, 1986, 244, 229-244.	1.6	6
148	Effects of thyroidectomy and season on the external granular layer of the cerebellum in metamorphosing bullfrog tadpoles (Rana catesbeiana). Experimental Neurology, 1983, 79, 265-277.	4.1	4
149	A novel soluble protein factor with non-opioid dynorphin A-binding activity. Biochemical and Biophysical Research Communications, 2004, 321, 202-209.	2.1	4
150	Opioid system diversity in developing neurons, astroglia, and oligodendroglia in the subventricular zone and striatum: Impact on gliogenesis in vivo. Clia, 2001, 36, 78-88.	4.9	4
151	Ultrastructural studies on the ventricular surface of the frog cerebellum. Cell and Tissue Research, 1982, 225, 443-8.	2.9	3
152	Short interfering RNA-induced gene silencing is transmitted between cells from the mammalian central nervous system. Journal of Neurochemistry, 2006, 98, 1541-1550.	3.9	3
153	Opioids, Astroglial Chemokines, Microglial Reactivity, and Neuronal Injury in HIV-1 Encephalitis. , 2010, , 353-377.		1
154	Selective vulnerability of cerebellar granule neuroblasts and their progeny to drugs with abuse liability. Cerebellum, 2003, 2, 184-195.	2.5	1
155	HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neuroscience Letters, 2022, 782, 136688.	2.1	1
156	Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cellular and Molecular Neurobiology, 0, , .	3.3	1
157	Effects of HIVâ€1 tat protein on excitability of enteric neurons. FASEB Journal, 2013, 27, 664.5.	0.5	0
158	Chloride channels with CLC-1-like properties differentially regulate the excitability of dopamine receptor D1- and D2-expressing striatal medium spiny neurons. American Journal of Physiology - Cell Physiology, 2022, , .	4.6	0
159	Cross-talk between microglia and neurons regulates HIV latency. , 2019, 15, e1008249.		0
160	Cross-talk between microglia and neurons regulates HIV latency. , 2019, 15, e1008249.		0
161	Cross-talk between microglia and neurons regulates HIV latency. , 2019, 15, e1008249.		0