Simon Ferrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381613/publications.pdf

Version: 2024-02-01

16451 10734 32,652 140 64 138 citations h-index g-index papers 148 148 148 31869 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel methods improve prediction of species' distributions from occurrence data. Ecography, 2006, 29, 129-151.	4.5	6,691
2	Sample selection bias and presenceâ€only distribution models: implications for background and pseudoâ€absence data. Ecological Applications, 2009, 19, 181-197.	3.8	2,121
3	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	12.6	2,026
4	Effects of sample size on the performance of species distribution models. Diversity and Distributions, 2008, 14, 763-773.	4.1	1,771
5	Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 2000, 133, 225-245.	2.5	1,571
6	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
7	Essential Biodiversity Variables. Science, 2013, 339, 277-278.	12.6	1,150
8	New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution, 2004, 19, 497-503.	8.7	848
9	Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 2007, 13, 252-264.	4.1	765
10	Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 2016, 353, 288-291.	12.6	741
11	Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 2006, 43, 393-404.	4.0	584
12	A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 2017, 92, 698-715.	10.4	570
13	Mapping Spatial Pattern in Biodiversity for Regional Conservation Planning: Where to from Here?. Systematic Biology, 2002, 51, 331-363.	5.6	561
14	Space can substitute for time in predicting climate-change effects on biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9374-9379.	7.1	551
15	Forecasting the Effects of Global Warming on Biodiversity. BioScience, 2007, 57, 227-236.	4.9	483
16	Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 2016, 7, 12306.	12.8	472
17	Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 2007, 13, 332-340.	4.1	445
18	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	27.8	436

#	Article	IF	CITATIONS
19	Making better biogeographical predictions of species' distributions. Journal of Applied Ecology, 2006, 43, 386-392.	4.0	415
20	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	27.8	413
21	The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 2008, 45, 239-247.	4.0	401
22	An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling, 2000, 128, 127-147.	2.5	299
23	Title is missing!. Biodiversity and Conservation, 2002, 11, 2275-2307.	2.6	287
24	Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 2019, 3, 539-551.	7.8	283
25	A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real-world planning, and a research agenda for further refinement. Biological Conservation, 2000, 93, 303-325.	4.1	252
26	Sustainable development must account for pandemic risk. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3888-3892.	7.1	223
27	Title is missing!. Biodiversity and Conservation, 2002, 11, 2309-2338.	2.6	214
28	The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling, 2005, 186, 280-289.	2.5	202
29	Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecology Letters, 2016, 19, 1468-1478.	6.4	200
30	How Much Compensation is Enough? A Framework for Incorporating Uncertainty and Time Discounting When Calculating Offset Ratios for Impacted Habitat. Restoration Ecology, 2009, 17, 470-478.	2.9	198
31	Using abiotic data for conservation assessments over extensive regions: quantitative methods applied across New South Wales, Australia. Biological Conservation, 2000, 96, 55-82.	4.1	165
32	Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1875-1881.	2.6	160
33	The practical value of modelling relative abundance of species for regional conservation planning: a case study. Biological Conservation, 2001, 98, 33-43.	4.1	160
34	How well protected are the forests of north-eastern New South Wales? — Analyses of forest environments in relation to formal protection measures, land tenure, and vulnerability to clearing. Forest Ecology and Management, 1996, 85, 311-333.	3.2	159
35	Connecting Earth observation to high-throughput biodiversity data. Nature Ecology and Evolution, 2017, 1, 176.	7.8	156
36	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	10.4	154

#	Article	IF	CITATIONS
37	Monitoring biodiversity change through effective global coordination. Current Opinion in Environmental Sustainability, 2017, 29, 158-169.	6.3	147
38	Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131201.	2.6	145
39	Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature, 2019, 573, 582-585.	27.8	144
40	Mapping More of Terrestrial Biodiversity for Global Conservation Assessment. BioScience, 2004, 54, 1101.	4.9	138
41	Which environmental variables should I use in my biodiversity model?. International Journal of Geographical Information Science, 2012, 26, 2009-2047.	4.8	134
42	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	7.8	131
43	Improving biodiversity monitoring. Austral Ecology, 2012, 37, 285-294.	1.5	130
44	Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People and Nature, 2020, 2, 1172-1195.	3.7	127
45	Building a global observing system for biodiversity. Current Opinion in Environmental Sustainability, 2012, 4, 139-146.	6.3	125
46	Climate Velocity Can Inform Conservation in a Warming World. Trends in Ecology and Evolution, 2018, 33, 441-457.	8.7	124
47	Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution. Journal of Applied Ecology, 2001, 38, 412-424.	4.0	123
48	Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biological Conservation, 2017, 213, 272-279.	4.1	114
49	A method for quantifying biodiversity loss and its application to a 50â€year record of deforestation across Madagascar. Conservation Letters, 2008, 1, 173-181.	5.7	110
50	Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190128.	4.0	107
51	Variation in plant diversity in mediterraneanâ€elimate ecosystems: the role of climatic and topographical stability. Journal of Biogeography, 2015, 42, 552-564.	3.0	104
52	Supply of carbon sequestration and biodiversity services from Australia's agricultural land under global change. Global Environmental Change, 2014, 28, 166-181.	7.8	97
53	Predicting impacts of climate change on biodiversity: a role for semiâ€mechanistic communityâ€level modelling. Diversity and Distributions, 2011, 17, 374-380.	4.1	90
54	Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications. Freshwater Biology, 2011, 56, 21-38.	2.4	88

#	Article	IF	CITATIONS
55	Nature Conservation Requires More than a Passion for Species. Conservation Biology, 2004, 18, 1674-1676.	4.7	87
56	Characteristics of climate change refugia for Australian biodiversity. Austral Ecology, 2014, 39, 887-897.	1.5	85
57	Ecosystem greenspots: identifying potential drought, fire, and climateâ€change microâ€refuges. Ecological Applications, 2012, 22, 1852-1864.	3.8	83
58	A successful communityâ€level strategy for conservation prioritization. Journal of Applied Ecology, 2008, 45, 1436-1445.	4.0	82
59	Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography, 2011, 34, 836-847.	4.5	81
60	Projecting impacts of global climate and landâ€use scenarios on plant biodiversity using compositionalâ€turnover modelling. Global Change Biology, 2019, 25, 2763-2778.	9.5	76
61	Synthesis of pattern and process in biodiversity conservation assessment: a flexible wholeâ€landscape modelling framework. Diversity and Distributions, 2010, 16, 386-402.	4.1	73
62	Extending spatial modelling of climate change responses beyond the realized niche: estimating, and accommodating, physiological limits and adaptive evolution. Global Ecology and Biogeography, 2015, 24, 1192-1202.	5.8	73
63	Complementarity, biodiversity viability analysis, and policy-based algorithms for conservation. Environmental Science and Policy, 2003, 6, 311-328.	4.9	70
64	Scenarios and Models to Support Global Conservation Targets. Trends in Ecology and Evolution, 2019, 34, 57-68.	8.7	66
65	Incorporating Habitat Mapping into Practical Koala Conservation on Private Lands. Conservation Biology, 2000, 14, 669-680.	4.7	64
66	Complementarity-based conservation prioritization using a community classification, and its application to riverine ecosystems. Biological Conservation, 2010, 143, 984-991.	4.1	64
67	Downscaling landâ€use data to provide global 30″ estimates of five landâ€use classes. Ecology and Evolution, 2016, 6, 3040-3055.	1.9	64
68	Reconciling global priorities for conserving biodiversity habitat. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9906-9911.	7.1	64
69	Survey-gap analysis in expeditionary research: where do we go from here?. Biological Journal of the Linnean Society, 2005, 85, 549-567.	1.6	63
70	Improving the Key Biodiversity Areas Approach for Effective Conservation Planning. BioScience, 2007, 57, 256-261.	4.9	62
71	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	3 . 6	61
72	Strong congruence in tree and fern community turnover in response to soils and climate in central <scp>P</scp> anama. Journal of Ecology, 2013, 101, 506-516.	4.0	60

#	Article	IF	CITATIONS
73	The ED strategy: how species-level surrogates indicate general biodiversity patterns through an 'environmental diversity' perspective. Journal of Biogeography, 2004, 31, 1207-1217.	3.0	58
74	Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum. Ecography, 2013, 36, 460-473.	4.5	57
7 5	Achieving global biodiversity goals by 2050 requires urgent and integrated actions. One Earth, 2022, 5, 597-603.	6.8	57
76	Dynamic macroecology and the future for biodiversity. Global Change Biology, 2012, 18, 3149-3159.	9.5	55
77	The spatial links tool: Automated mapping of habitat linkages in variegated landscapes. Ecological Modelling, 2007, 200, 403-411.	2.5	51
78	Phylogenetic generalised dissimilarity modelling: a new approach to analysing and predicting spatial turnover in the phylogenetic composition of communities. Ecography, 2014, 37, 21-32.	4. 5	51
79	Combining α - and β -diversity models to fill gaps in our knowledge of biodiversity. Ecology Letters, 2011, 14, 1043-1051.	6.4	50
80	Controlled comparison of species- and community-level models across novel climates and communities. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152817.	2.6	50
81	A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Global Ecology and Biogeography, 2022, 31, 802-821.	5.8	50
82	A raster-based technique for analysing habitat configuration: The cost–benefit approach. Ecological Modelling, 2007, 202, 324-332.	2.5	48
83	Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Global Change Biology, 2020, 26, 6702-6714.	9.5	47
84	Synergies between the key biodiversity area and systematic conservation planning approaches. Conservation Letters, 2019, 12, e12625.	5.7	46
85	Net Present Biodiversity Value and the Design of Biodiversity Offsets. Ambio, 2013, 42, 100-110.	5. 5	44
86	Dimensions of biodiversity loss: Spatial mismatch in landâ€use impacts on species, functional and phylogenetic diversity of European bees. Diversity and Distributions, 2017, 23, 1435-1446.	4.1	43
87	Planning for the persistence of river biodiversity: exploring alternative futures using processâ€based models. Freshwater Biology, 2011, 56, 39-56.	2.4	41
88	Getting biodiversity intactness indices right: ensuring that â€~biodiversity' reflects â€~diversity'. Global Change Biology, 2008, 14, 207-217.	9.5	38
89	Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods. Biodiversity Informatics, 2020, 15, 69-80.	3.0	38
90	Rapid evaluation of metapopulation persistence in highly variegated landscapes. Biological Conservation, 2009, 142, 529-540.	4.1	37

#	Article	IF	CITATIONS
91	Toward monitoring forest ecosystem integrity within the postâ€2020 Global Biodiversity Framework. Conservation Letters, 2021, 14, e12822.	5.7	37
92	Combining community-level spatial modelling and expert knowledge to inform climate adaptation in temperate grassy eucalypt woodlands and related grasslands. Biodiversity and Conservation, 2012, 21, 1627-1650.	2.6	34
93	Integrating modelling of biodiversity composition and ecosystem function. Oikos, 2016, 125, 10-19.	2.7	32
94	Using the essential biodiversity variables framework to measure biodiversity change at national scale. Biological Conservation, 2017, 213, 264-271.	4.1	30
95	Habitat Condition Assessment System: a new way to assess the condition of natural habitats for terrestrial biodiversity across whole regions using remote sensing data. Methods in Ecology and Evolution, 2016, 7, 1050-1059.	5.2	27
96	Current Uses of Beta-Diversity in Biodiversity Conservation: A response to Socolar et al Trends in Ecology and Evolution, 2016, 31, 337-338.	8.7	27
97	Truncation of thermal tolerance niches among Australian plants. Global Ecology and Biogeography, 2018, 27, 22-31.	5.8	27
98	A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecological Indicators, 2020, 117, 106554.	6.3	26
99	Linking biodiversity into national economic accounting. Environmental Science and Policy, 2021, 116, 20-29.	4.9	25
100	Quantifying the relative irreplaceability of important bird and biodiversity areas. Conservation Biology, 2016, 30, 392-402.	4.7	24
101	Past, present and future refugia for Tasmania's palaeoendemic flora. Journal of Biogeography, 2017, 44, 1537-1546.	3.0	24
102	Extracting More Value from Biodiversity Change Observations through Integrated Modeling. BioScience, 2011, 61, 96-97.	4.9	23
103	Linking changes in community composition and function under climate change. Ecological Applications, 2015, 25, 2132-2141.	3.8	23
104	Matching biodiversity indicators to policy needs. Conservation Biology, 2021, 35, 522-532.	4.7	23
105	Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region. Journal of Biogeography, 2016, 43, 289-300.	3.0	22
106	Comparing habitat configuration strategies for retaining biodiversity under climate change. Journal of Applied Ecology, 2013, 50, 519-527.	4.0	21
107	Improving biodiversity surrogates for conservation assessment: A test of methods and the value of targeted biological surveys. Diversity and Distributions, 2018, 24, 1333-1346.	4.1	21
108	A probabilistic approach to nicheâ€based community models for spatial forecasts of assemblage properties and their uncertainties. Journal of Biogeography, 2013, 40, 1939-1946.	3.0	20

#	Article	IF	CITATIONS
109	BILBI: Supporting global biodiversity assessment through high-resolution macroecological modelling. Environmental Modelling and Software, 2020, 132, 104806.	4.5	20
110	Editorial Essay: An update on progress towards Aichi Biodiversity Target 11. Parks, 2019, , 7-18.	1.9	19
111	Landscape scenario modelling of vegetation condition. Ecological Management and Restoration, 2006, 7, S45-S52.	1.5	17
112	Macroecological scale effects of biodiversity on ecosystem functions under environmental change. Ecology and Evolution, 2016, 6, 2579-2593.	1.9	17
113	Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Global Ecology and Conservation, 2020, 22, e00886.	2.1	17
114	Primary productivity is weakly related to floristic alpha and beta diversity across Australia. Global Ecology and Biogeography, 2016, 25, 1294-1307.	5.8	16
115	Biodiversity Modelling as Part of an Observation System. , 2017, , 239-257.		16
116	Riddles in the dark: Assessing diversity patterns for cryptic subterranean fauna of the Pilbara. Diversity and Distributions, 2019, 25, 240-254.	4.1	15
117	The role of geography and environment in species turnover: phytophagous arthropods on a Neotropical legume. Journal of Biogeography, 2013, 40, 1755-1766.	3.0	14
118	Essential Biodiversity Variables: Integrating In-Situ Observations and Remote Sensing Through Modeling., 2020,, 485-501.		14
119	The Biodiversity Forecasting Toolkit: Answering the †how much', †what', and †where' of plannir biodiversity persistence. Ecological Modelling, 2014, 274, 80-91.	ng for	13
120	Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012. Scientific Reports, 2021, 11, 20249.	3.3	12
121	Uniting marine and terrestrial modelling of biodiversity under climate change. Trends in Ecology and Evolution, 2010, 25, 550-551.	8.7	11
122	Wholeâ€landscape modelling of compositional turnover in aquatic invertebrates informs conservation gap analysis: AnÂexample from southâ€western Australia. Freshwater Biology, 2017, 62, 1359-1376.	2.4	11
123	Increasing the uptake of ecological model results in policy decisions to improve biodiversity outcomes. Environmental Modelling and Software, 2022, 149, 105318.	4.5	11
124	Phylogeographic evidence for evolutionary refugia in the Gulf sandstone ranges of northern Australia. Australian Journal of Zoology, 2017, 65, 408.	1.0	10
125	Improving links between environmental accounting and scenarioâ€based cumulative impact assessment for betterâ€informed biodiversity decisions. Journal of Applied Ecology, 2019, 56, 2732-2741.	4.0	10
126	Predicting community rankâ€ebundance distributions under current and future climates. Ecography, 2018, 41, 1572-1582.	4.5	9

#	Article	IF	Citations
127	Prioritizing where to restore Earth's ecosystems. Nature, 2020, 586, 680-681.	27.8	9
128	Characterising the phytophagous arthropod fauna of a single host plant species: assessing survey completeness at continental and local scales. Biodiversity and Conservation, 2014, 23, 2985-3003.	2.6	8
129	Assessing collaborative, privately managed biodiversity conservation derived from an offsets program: Lessons from the Southern Mallee of New South Wales, Australia. Land Use Policy, 2016, 59, 59-70.	5.6	8
130	Habitatâ€based biodiversity assessment for ecosystem accounting in the Murray–Darling Basin. Conservation Biology, 2022, 36, .	4.7	7
131	Improving the assessment of species compositional dissimilarity in <i>a priori</i> ecological classifications: evaluating map scale, sampling intensity and improvement in a hierarchical classification. Applied Vegetation Science, 2010, 13, 473-484.	1.9	6
132	Linking site and regional scales of biodiversity assessment for delivery of conservation incentive payments. Conservation Letters, 2010, 3, 415-424.	5.7	6
133	Community assembly processes restrict the capacity for genetic adaptation under climate change. Ecography, 2019, 42, 1164-1174.	4.5	6
134	The importance of defining measures of stability in macroecology and biogeography. Frontiers of Biogeography, 2019, 11, .	1.8	6
135	A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation. BioScience, 2021, 71, 1261-1273.	4.9	6
136	Incorporating existing thermal tolerance into projections of compositional turnover under climate change. Global Ecology and Biogeography, 2019, 28, 851-861.	5.8	5
137	Extending vegetation site data and ensemble models to predict patterns of foliage cover and species richness for plant functional groups. Landscape Ecology, 2021, 36, 1391-1407.	4.2	4
138	Increasing capacity to produce scenarios and models for biodiversity and ecosystem services. Biota Neotropica, 2020, 20, .	0.5	3
139	Response: Where Might We Find Ecologically Intact Communities?. Frontiers in Forests and Global Change, 2022, 5, .	2.3	3
140	Primary productivity is related to niche width in the Australian Wet Tropics. Global Ecology and Biogeography, 2018, 27, 1300-1313.	5.8	0