
Davy Guillarme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast analysis in liquid chromatography using small particle size and high pressure. Journal of Separation Science, 2006, 29, 1836-1848.	2.5	293
2	New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches. Analytical and Bioanalytical Chemistry, 2010, 397, 1069-1082.	3.7	257
3	Modern analytical supercritical fluid chromatography using columns packed with sub-2μm particles: A tutorial. Analytica Chimica Acta, 2014, 824, 18-35.	5.4	234
4	Theory and practice of size exclusion chromatography for the analysis of protein aggregates. Journal of Pharmaceutical and Biomedical Analysis, 2014, 101, 161-173.	2.8	226
5	Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Analytical Chemistry, 2016, 88, 480-507.	6.5	205
6	Supercritical fluid chromatography in pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2015, 113, 56-71.	2.8	197
7	Method transfer for fast liquid chromatography in pharmaceutical analysis: Application to short columns packed with small particle. Part II: Gradient experiments. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 430-440.	4.3	191
8	Ion-exchange chromatography for the characterization of biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2015, 113, 43-55.	2.8	186
9	Coupling ultra-high-pressure liquid chromatography with mass spectrometry. TrAC - Trends in Analytical Chemistry, 2010, 29, 15-27.	11.4	176
10	Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. Journal of Chromatography A, 2012, 1266, 158-167.	3.7	173
11	Intact protein analysis in the biopharmaceutical field. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 810-822.	2.8	150
12	Recent developments in liquid chromatography—Impact on qualitative and quantitative performance. Journal of Chromatography A, 2007, 1149, 20-29.	3.7	140
13	Current and future trends in UHPLC. TrAC - Trends in Analytical Chemistry, 2014, 63, 2-13.	11.4	140
14	Adding a new separation dimension to MS and LC–MS: What is the utility of ion mobility spectrometry?. Journal of Separation Science, 2018, 41, 20-67.	2.5	140
15	Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1065-1066, 119-128.	2.3	135
16	A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. Journal of Chromatography A, 2010, 1217, 8230-8240.	3.7	134
17	Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 33-44.	2.8	133
18	Coupling ultra high-pressure liquid chromatography with mass spectrometry: Constraints and possible applications. Journal of Chromatography A, 2013, 1292, 2-18.	3.7	129

#	Article	IF	CITATIONS
19	Strategies for formulating and delivering poorly water-soluble drugs. Journal of Drug Delivery Science and Technology, 2015, 30, 342-351.	3.0	125
20	New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69, 9-27.	2.8	120
21	High throughput liquid chromatography with sub-2μm particles at high pressure and high temperature. Journal of Chromatography A, 2007, 1167, 76-84.	3.7	115
22	Method transfer for fast liquid chromatography in pharmaceutical analysis: Application to short columns packed with small particle. Part I: Isocratic separation. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 475-482.	4.3	114
23	Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87, 105-119.	2.8	113
24	Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 282-289.	2.8	113
25	Evaluation of various HILIC materials for the fast separation of polar compounds. Journal of Separation Science, 2010, 33, 752-764.	2.5	107
26	Coupling state-of-the-art supercritical fluid chromatography and mass spectrometry: From hyphenation interface optimization to high-sensitivity analysis of pharmaceutical compounds. Journal of Chromatography A, 2014, 1339, 174-184.	3.7	107
27	Therapeutic drug monitoring of seven psychotropic drugs and four metabolites in human plasma by HPLC–MS. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 1000-1008.	2.8	104
28	Analytical strategies for the characterization of therapeutic monoclonal antibodies. TrAC - Trends in Analytical Chemistry, 2013, 42, 74-83.	11.4	104
29	Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. Journal of Pharmaceutical and Biomedical Analysis, 2016, 130, 3-18.	2.8	104
30	Chromatographic behaviour and comparison of column packed with sub-2μm stationary phases in liquid chromatography. Journal of Chromatography A, 2006, 1128, 105-113.	3.7	101
31	Analysis of basic compounds by supercritical fluid chromatography: Attempts to improve peak shape and maintain mass spectrometry compatibility. Journal of Chromatography A, 2012, 1262, 205-213.	3.7	101
32	Optimized liquid chromatography–mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance. Journal of Chromatography A, 2008, 1180, 90-98.	3.7	97
33	UPLC–TOF-MS for plant metabolomics: A sequential approach for wound marker analysis in Arabidopsis thaliana. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 871, 261-270.	2.3	96
34	Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments. Journal of Chromatography A, 2013, 1314, 288-297.	3.7	94
35	Direct Identification of Rituximab Main Isoforms and Subunit Analysis by Online Selective Comprehensive Two-Dimensional Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2015, 87, 8307-8315.	6.5	90
36	Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. II: Analysis of biological samples. Analytica Chimica Acta, 2015, 853, 647-659.	5.4	90

#	Article	lF	CITATIONS
37	Recent Advances in Chromatography for Pharmaceutical Analysis. Analytical Chemistry, 2019, 91, 210-239.	6.5	85
38	Applicability of supercritical fluid chromatography – mass spectrometry to metabolomics. I – Optimization of separation conditions for the simultaneous analysis of hydrophilic and lipophilic substances. Journal of Chromatography A, 2018, 1562, 96-107.	3.7	84
39	Quantification of glucuronidated and sulfated steroids in human urine by ultra-high pressure liquid chromatography quadrupole time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 400, 503-516.	3.7	82
40	Practical Constraints in the Kinetic Plot Representation of Chromatographic Performance Data:Â Theory and Application to Experimental Data. Analytical Chemistry, 2006, 78, 2150-2162.	6.5	81
41	Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. Journal of Chromatography A, 2016, 1448, 81-92.	3.7	80
42	Development of Comprehensive Online Two-Dimensional Liquid Chromatography/Mass Spectrometry Using Hydrophilic Interaction and Reversed-Phase Separations for Rapid and Deep Profiling of Therapeutic Antibodies. Analytical Chemistry, 2018, 90, 5923-5929.	6.5	78
43	Therapeutic Fcâ€fusion proteins: Current analytical strategies. Journal of Separation Science, 2021, 44, 35-62.	2.5	78
44	Kinetic evaluation of new generation of column packed with 1.3μm core–shell particles. Journal of Chromatography A, 2013, 1308, 104-113.	3.7	77
45	Hydrophilic Interaction Chromatography Hyphenated with Mass Spectrometry: A Powerful Analytical Tool for the Comparison of Originator and Biosimilar Therapeutic Monoclonal Antibodies at the Middle-up Level of Analysis. Analytical Chemistry, 2017, 89, 2086-2092.	6.5	77
46	Comparison of originator and biosimilar therapeutic monoclonal antibodies using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. MAbs, 2016, 8, 1224-1234.	5.2	76
47	An Online Four-Dimensional HIC×SEC-IM×MS Methodology for Proof-of-Concept Characterization of Antibody Drug Conjugates. Analytical Chemistry, 2018, 90, 1578-1586.	6.5	75
48	Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry. Journal of Chromatography A, 2013, 1312, 49-57.	3.7	73
49	Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: Feasibility assessment for future mass spectrometry hyphenation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1065-1066, 35-43.	2.3	73
50	Evaluation of a new wide pore core–shell material (Aerisâ,,¢ WIDEPORE) and comparison with other existing stationary phases for the analysis of intact proteins. Journal of Chromatography A, 2012, 1236, 177-188.	3.7	72
51	Improved quality-by-design compliant methodology for method development in reversed-phase liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2013, 84, 215-223.	2.8	71
52	What are the current solutions for interfacing supercritical fluid chromatography and mass spectrometry?. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1083, 160-170.	2.3	71
53	High throughput qualitative analysis of polyphenols in tea samples by ultra-high pressure liquid chromatography coupled to UV and mass spectrometry detectors. Journal of Chromatography A, 2010, 1217, 6882-6890.	3.7	70
54	The use of columns packed with sub-2 µm particles in supercritical fluid chromatography. TrAC - Trends in Analytical Chemistry, 2014, 63, 44-54.	11.4	70

#	Article	IF	CITATIONS
55	Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1086, 176-183.	2.3	69
56	Analytical tools for the physicochemical profiling of drug candidates to predict absorption/distribution. Analytical and Bioanalytical Chemistry, 2009, 394, 707-729.	3.7	68
57	Screening of the most relevant parameters for method development in ultra-high performance hydrophilic interaction chromatography. Journal of Chromatography A, 2013, 1282, 72-83.	3.7	68
58	A systematic investigation of sample diluents in modern supercritical fluid chromatography. Journal of Chromatography A, 2017, 1511, 122-131.	3.7	67
59	The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography. Journal of Chromatography A, 2012, 1270, 127-138.	3.7	66
60	Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: Investigation of mobile phase and MS conditions. Analytica Chimica Acta, 2015, 853, 637-646.	5.4	66
61	Evaluation of columns packed with shell particles with compounds of pharmaceutical interest. Journal of Chromatography A, 2012, 1228, 221-231.	3.7	65
62	Some solutions to obtain very efficient separations in isocratic and gradient modes using small particles size and ultra-high pressure. Journal of Chromatography A, 2009, 1216, 3232-3243.	3.7	64
63	Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 2015, 882, 127-139.	5.4	64
64	Evaluation of size exclusion chromatography columns packed with sub-3 μm particles for the analysis of biopharmaceutical proteins. Journal of Chromatography A, 2017, 1498, 80-89.	3.7	64
65	Retention modeling and method development in hydrophilic interaction chromatography. Journal of Chromatography A, 2014, 1337, 116-127.	3.7	63
66	Analytical strategies for the determination of amino acids: Past, present and future trends. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1132, 121819.	2.3	63
67	Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversedâ€phase stationary phases. Journal of Separation Science, 2012, 35, 3113-3123.	2.5	62
68	Glycosylation of biosimilars: Recent advances in analytical characterization and clinical implications. Analytica Chimica Acta, 2019, 1089, 1-18.	5.4	62
69	Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. Journal of Chromatography A, 2009, 1216, 5660-5668.	3.7	61
70	Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice. Journal of Chromatography A, 2015, 1408, 1-14.	3.7	61
71	Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins. Journal of Separation Science, 2015, 38, 357-367.	2.5	61
72	Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 393-403.	2.8	61

#	Article	IF	CITATIONS
73	Supercritical fluid chromatography – Mass spectrometry: Recent evolution and current trends. TrAC - Trends in Analytical Chemistry, 2019, 118, 731-738.	11.4	61
74	Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine. Journal of Chromatography A, 2016, 1451, 145-155.	3.7	60
75	Coupling ultra high-pressure liquid chromatography with single quadrupole mass spectrometry for the analysis of a complex drug mixture. Talanta, 2009, 78, 377-387.	5.5	59
76	Protocols for the analytical characterization of therapeutic monoclonal antibodies. Il – Enzymatic and chemical sample preparation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1060, 325-335.	2.3	59
77	Ultra High Pressure Liquid Chromatography for Crude Plant Extract Profiling. Journal of AOAC INTERNATIONAL, 2011, 94, 51-70.	1.5	59
78	Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification. Analytica Chimica Acta, 2016, 916, 8-16.	5.4	58
79	Practical method transfer from high performance liquid chromatography to ultra-high performance liquid chromatography: The importance of frictional heating. Journal of Chromatography A, 2011, 1218, 7971-7981.	3.7	57
80	Fast and sensitive supercritical fluid chromatography – tandem mass spectrometry multi-class screening method for the determination of doping agents in urine. Analytica Chimica Acta, 2016, 915, 102-110.	5.4	57
81	Ultra-high performance supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry as a performing tool for bioactive analysis. Journal of Chromatography A, 2016, 1450, 101-111.	3.7	56
82	Interlaboratory and Interplatform Study of Steroids Collision Cross Section by Traveling Wave Ion Mobility Spectrometry. Analytical Chemistry, 2020, 92, 5013-5022.	6.5	56
83	Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 493-505.	2.8	54
84	Evaluation and comparison of various separation techniques for the analysis of closely-related compounds of pharmaceutical interest. Journal of Chromatography A, 2013, 1282, 172-177.	3.7	52
85	New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 203-214.	4.3	52
86	Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. I â [^] Optimization of separation conditions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 103-111.	2.3	51
87	UHPLC determination of catechins for the quality control of green tea. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 307-314.	2.8	50
88	Monoclonal antibody N-glycosylation profiling using capillary electrophoresis – Mass spectrometry: Assessment and method validation. Talanta, 2018, 178, 530-537.	5.5	50
89	The Emergence of Universal Chromatographic Methods in the Research and Development of New Drug Substances. Accounts of Chemical Research, 2019, 52, 1990-2002.	15.6	50
90	Analysis of recombinant monoclonal antibodies by RPLC: Toward a generic method development approach. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 158-168.	2.8	49

#	Article	IF	CITATIONS
91	Evaluation of various chromatographic approaches for the retention of hydrophilic compounds and <scp>MS</scp> compatibility. Journal of Separation Science, 2013, 36, 3141-3151.	2.5	49
92	Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2114/4m particles. Journal of Pharmaceutical and Biomedical Analysis, 2013, 78-79, 141-149.	2.8	49
93	Ultra-high-performance liquid chromatography for the characterization of therapeutic proteins. TrAC - Trends in Analytical Chemistry, 2014, 63, 76-84.	11.4	49
94	A Novel Online Four-Dimensional SEC×SEC-IM×MS Methodology for Characterization of Monoclonal Antibody Size Variants. Analytical Chemistry, 2018, 90, 13929-13937.	6.5	49
95	Relation between the particle size distribution and the kinetic performance of packed columns. Journal of Chromatography A, 2007, 1161, 224-233.	3.7	48
96	Validation of chiral capillary electrophoresisâ€electrospray ionizationâ€mass spectrometry methods for ecstasy and methadone in plasma. Electrophoresis, 2008, 29, 2193-2202.	2.4	48
97	Fast chiral separation of drugs using columns packed with subâ€2 μm particles and ultraâ€high pressure. Chirality, 2010, 22, 320-330.	2.6	48
98	Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1092, 368-378.	2.3	48
99	Multi-dimensional LC-MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. Analyst, The, 2021, 146, 747-769.	3.5	48
100	Evaluation of recent very efficient wide-pore stationary phases for the reversed-phase separation of proteins. Journal of Chromatography A, 2012, 1252, 90-103.	3.7	47
101	First inter-laboratory study of a Supercritical Fluid Chromatography method for the determination of pharmaceutical impurities. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 414-424.	2.8	47
102	Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Review of Proteomics, 2019, 16, 337-362.	3.0	47
103	Analytical aspects in doping control: Challenges and perspectives. Forensic Science International, 2011, 213, 49-61.	2.2	46
104	Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: Optimization of the phase system. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121, 161-173.	2.8	46
105	Analytical Strategies for Doping Control Purposes: Needs, Challenges, and Perspectives. Analytical Chemistry, 2016, 88, 508-523.	6.5	46
106	Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134, 170-180.	2.8	46
107	Comparison of columns packed with porous subâ€2 μm particles and superficially porous subâ€3 μm for peptide analysis at ambient and high temperature. Journal of Separation Science, 2010, 33, 2465-2477.	particles 2.5	45
108	Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography. Journal of Chromatography A, 2014, 1360, 275-287.	3.7	44

#	Article	IF	CITATIONS
109	Hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry: Effect of electrospray ionization source geometry on sensitivity. Journal of Chromatography A, 2014, 1356, 211-220.	3.7	44
110	Computer-assisted UHPLC–MS method development and optimization for the determination of 24 antineoplastic drugs used in hospital pharmacy. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 395-401.	2.8	44
111	Supercritical fluid chromatography – Mass spectrometry in metabolomics: Past, present, and future perspectives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1161, 122444.	2.3	43
112	Microemulsion electrokinetic chromatography hyphenated to atmospheric pressure photoionization mass spectrometry. Electrophoresis, 2008, 29, 11-19.	2.4	42
113	Contribution of various types of liquid chromatography–mass spectrometry instruments to band broadening in fast analysis. Journal of Chromatography A, 2013, 1310, 45-55.	3.7	42
114	Adsorption and recovery issues of recombinant monoclonal antibodies in reversed-phase liquid chromatographyâ€. Journal of Separation Science, 2015, 38, 1-8.	2.5	42
115	Protocols for the analytical characterization of therapeutic monoclonal antibodies. I – Non-denaturing chromatographic techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1058, 73-84.	2.3	42
116	Antineoplastic drugs and their analysis: a state of the art review. Analyst, The, 2017, 142, 2273-2321.	3.5	41
117	Pharmaceutical Applications on Columns Packed with Sub-2 Âm Particles. Journal of Chromatographic Science, 2008, 46, 199-208.	1.4	40
118	Comparison of liquid chromatography and supercritical fluid chromatography coupled to compact single quadrupole mass spectrometer for targeted in vitro metabolism assay. Journal of Chromatography A, 2014, 1371, 244-256.	3.7	40
119	A scoring approach for multi-platform acquisition in metabolomics. Journal of Chromatography A, 2019, 1592, 47-54.	3.7	40
120	Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1080, 37-41.	2.3	39
121	Systematic evaluation of matrix effects in supercritical fluid chromatography versus liquid chromatography coupled to mass spectrometry for biological samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1079, 51-61.	2.3	39
122	Streamlined Characterization of an Antibody–Drug Conjugate by Two-Dimensional and Four-Dimensional Liquid Chromatography/Mass Spectrometry. Analytical Chemistry, 2019, 91, 14896-14903.	6.5	39
123	Metamorphosis of supercritical fluid chromatography: A viable tool for the analysis of polar compounds?. TrAC - Trends in Analytical Chemistry, 2021, 141, 116304.	11.4	39
124	Coupling non-denaturing chromatography to mass spectrometry for the characterization of monoclonal antibodies and related products. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113207.	2.8	38
125	Peak capacity optimisation for high resolution peptide profiling in complex mixtures by liquid chromatography coupled to time-of-flight mass spectrometry: Application to the Conus consors cone snail venom. Journal of Chromatography A, 2012, 1259, 187-199.	3.7	36
126	Reliability of simulated robustness testing in fast liquid chromatography, using state-of-the-art column technology, instrumentation and modelling software. Journal of Pharmaceutical and Biomedical Analysis, 2014, 89, 67-75.	2.8	36

#	Article	IF	CITATIONS
127	Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. Journal of Chromatography A, 2018, 1549, 63-76.	3.7	36
128	Systematic evaluation of mobile phase additives for the LC–MS characterization of therapeutic proteins. Talanta, 2015, 136, 60-67.	5.5	34
129	Characterization of cation exchanger stationary phases applied for the separations of therapeutic monoclonal antibodies. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 169-176.	2.8	34
130	From proof of concept to the routine use of an automated and robust multi-dimensional liquid chromatography mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies. Journal of Chromatography A, 2020, 1615, 460740.	3.7	34
131	Applicability of Supercritical fluid chromatography–Mass spectrometry to metabolomics. Il–Assessment of a comprehensive library of metabolites and evaluation of biological matrices. Journal of Chromatography A, 2020, 1620, 461021.	3.7	34
132	Analysis of peptides and proteins using sub-2μm fully porous and sub 3-μm shell particles. Journal of Chromatography A, 2011, 1218, 8903-8914.	3.7	33
133	Method development for pharmaceutics: Some solutions for tuning selectivity in reversed phase and hydrophilic interaction liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2012, 63, 95-105.	2.8	33
134	Utility of dry load injection for an efficient natural products isolation at the semi-preparative chromatographic scale. Journal of Chromatography A, 2019, 1598, 85-91.	3.7	33
135	Possibilities of new generation columns packed with 1.3μm core–shell particles in gradient elution mode. Journal of Chromatography A, 2013, 1320, 86-95.	3.7	32
136	Influence of pressure and temperature on molar volume and retention properties of peptides in ultra-high pressure liquid chromatography. Journal of Chromatography A, 2013, 1311, 65-71.	3.7	32
137	Robust UHPLC Separation Method Development for Multi-API Product Containing Amlodipine and Bisoprolol: The Impact of Column Selection. Chromatographia, 2014, 77, 1119-1127.	1.3	32
138	Possibilities of retention modeling and computer assisted method development in supercritical fluid chromatography A, 2015, 1381, 219-228.	3.7	32
139	Rational and Efficient Preparative Isolation of Natural Products by MPLC-UV-ELSD based on HPLC to MPLC Gradient Transfer. Planta Medica, 2015, 81, 1636-1643.	1.3	32
140	Analysis of recombinant monoclonal antibodies in hydrophilic interaction chromatography: A generic method development approach. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 24-32.	2.8	32
141	Systematic comparison of a new generation of columns packed with sub-2 μm superficially porous particles. Journal of Separation Science, 2014, 37, 189-197.	2.5	31
142	Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography. Journal of Chromatography A, 2016, 1438, 244-253.	3.7	31
143	Development of a fast workflow to screen the charge variants of therapeutic antibodies. Journal of Chromatography A, 2017, 1498, 147-154.	3.7	31
144	Implementation of a generic liquid chromatographic method development workflow: Application to the analysis of phytocannabinoids and Cannabis sativa extracts. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 116-124.	2.8	31

#	Article	IF	CITATIONS
145	Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. II- Identification of sub-units for the characterization of even and odd load drug species. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,	2.3	30
146	Proof of Concept To Achieve Infinite Selectivity for the Chromatographic Separation of Therapeutic Proteins. Analytical Chemistry, 2019, 91, 12954-12961.	6.5	30
147	Determination of size variants by CE-SDS for approved therapeutic antibodies: Key implications of subclasses and light chain specificities. Journal of Pharmaceutical and Biomedical Analysis, 2020, 184, 113166.	2.8	30
148	Fast and Automated Characterization of Monoclonal Antibody Minor Variants from Cell Cultures by Combined Protein-A and Multidimensional LC/MS Methodologies. Analytical Chemistry, 2020, 92, 8506-8513.	6.5	30
149	SFC–MS versus RPLC–MS for drug analysis in biological samples. Bioanalysis, 2015, 7, 1193-1195.	1.5	29
150	Orthogonal Middle-up Approaches for Characterization of the Glycan Heterogeneity of Etanercept by Hydrophilic Interaction Chromatography Coupled to High-Resolution Mass Spectrometry. Analytical Chemistry, 2019, 91, 873-880.	6.5	29
151	Development of a 3D-LC/MS Workflow for Fast, Automated, and Effective Characterization of Glycosylation Patterns of Biotherapeutic Products. Analytical Chemistry, 2020, 92, 4357-4363.	6.5	29
152	Expanding the range of sub/supercritical fluid chromatography: Advantageous use of methanesulfonic acid in water-rich modifiers for peptide analysis. Journal of Chromatography A, 2021, 1642, 462048.	3.7	29
153	Estimation of pressure-, temperature- and frictional heating-related effects on proteins' retention under ultra-high-pressure liquid chromatographic conditions. Journal of Chromatography A, 2015, 1393, 73-80.	3.7	28
154	Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2016, 131, 124-132.	2.8	28
155	Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry. Journal of Chromatography A, 2016, 1439, 42-53.	3.7	28
156	Optimized selection of liquid chromatography conditions for wide range analysis of natural compounds. Journal of Chromatography A, 2017, 1504, 91-104.	3.7	28
157	Protocols for the analytical characterization of therapeutic monoclonal antibodies. III – Denaturing chromatographic techniques hyphenated to mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1096, 95-106.	2.3	28
158	Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 1: Alternative mobile phases and fine tuning of the separation. Journal of Pharmaceutical and Biomedical Analysis, 2019, 168, 138-147.	2.8	28
159	A generic workflow for the characterization of therapeutic monoclonal antibodies—application to daratumumab. Analytical and Bioanalytical Chemistry, 2019, 411, 4615-4627.	3.7	28
160	Current and future trends in reversed-phase liquid chromatography-mass spectrometry of therapeutic proteins. TrAC - Trends in Analytical Chemistry, 2020, 130, 115962.	11.4	28
161	Towards a simple on-line coupling of ion exchange chromatography and native mass spectrometry for the detailed characterization of monoclonal antibodies. Journal of Chromatography A, 2021, 1655, 462499.	3.7	28
162	Some advantages of high temperature for the separation of pharmaceutical compounds with mass spectrometry detection. Journal of Separation Science, 2005, 28, 1803-1811.	2.5	26

#	Article	IF	CITATIONS
163	High-Throughput Screening of Drugs of Abuse in Urine by Supported Liquid–Liquid Extraction and UHPLC Coupled to Tandem MS. Chromatographia, 2009, 70, 1373-1380.	1.3	26
164	Predictive Elution Window Stretching and Shifting as a Generic Search Strategy for Automated Method Development for Liquid Chromatography. Analytical Chemistry, 2012, 84, 7823-7830.	6.5	26
165	Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies. Analytical and Bioanalytical Chemistry, 2013, 405, 3137-3151.	3.7	26
166	Multi-target screening of biological samples using LC–MS/MS: focus on chromatographic innovations. Bioanalysis, 2014, 6, 1255-1273.	1.5	26
167	Use of Ultrashort Columns for Therapeutic Protein Separations. Part 1: Theoretical Considerations and Proof of Concept. Analytical Chemistry, 2021, 93, 1277-1284.	6.5	26
168	High resolution reversed phase analysis of recombinant monoclonal antibodies by ultra-high pressure liquid chromatography column coupling. Journal of Pharmaceutical and Biomedical Analysis, 2013, 83, 273-278.	2.8	25
169	Comprehensive study on the effects of sodium and potassium additives in size exclusion chromatographic separations of protein biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 242-251.	2.8	25
170	Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1096, 1-10.	2.3	25
171	New developments and possibilities of wide-pore superficially porous particle technology applied for the liquid chromatographic analysis of therapeutic proteins. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 225-235.	2.8	25
172	Separation of antibody drug conjugate species by RPLC: A generic method development approach. Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 60-69.	2.8	24
173	Optimization of non-linear gradient in hydrophobic interaction chromatography for the analytical characterization of antibody-drug conjugates. Journal of Chromatography A, 2017, 1481, 82-91.	3.7	24
174	Highâ€resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method. Electrophoresis, 2018, 39, 2083-2090.	2.4	24
175	Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: Separation of nucleobases and nucleosides. Journal of Chromatography A, 2014, 1368, 125-131.	3.7	23
176	Estimation of the effects of longitudinal temperature gradients caused by frictional heating on the solute retention using fully porous and superficially porous sub-21¼m materials. Journal of Chromatography A, 2014, 1359, 124-130.	3.7	23
177	The importance of system band broadening in modern size exclusion chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2017, 135, 50-60.	2.8	23
178	Computer assisted liquid chromatographic method development for the separation of therapeutic proteins. Analyst, The, 2016, 141, 5488-5501.	3.5	22
179	Extending the limits of size exclusion chromatography: Simultaneous separation of free payloads and related species from antibody drug conjugates and their aggregates. Journal of Chromatography A, 2018, 1539, 19-29.	3.7	22
180	Quantification of 4 antidepressants and a metabolite by LC–MS for therapeutic drug monitoring. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 1544-1550.	2.3	21

#	Article	IF	CITATIONS
181	Achievable separation performance and analysis time in current liquid chromatographic practice for monoclonal antibody separations. Journal of Pharmaceutical and Biomedical Analysis, 2017, 141, 59-69.	2.8	21
182	Advances in LC platforms for drug discovery. Expert Opinion on Drug Discovery, 2010, 5, 475-489.	5.0	20
183	Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: Implementation of a screening method with the assessment of a library of substances prohibited in sports. Analytica Chimica Acta, 2021, 1152, 338257.	5.4	20
184	Chromatographic Performance of Silica-Based Stationary Phases in High Temperature Liquid Chromatography: Pharmaceutical Applications. Current Pharmaceutical Analysis, 2007, 3, 221-229.	0.6	18
185	Evolution and Current Trends in Liquid and Supercritical Fluid Chromatography. Current Chromatography, 2014, 1, 15-40.	0.3	18
186	Reliability of computer-assisted method transfer between several column dimensions packed with 1.3–51¼m core–shell particles and between various instruments. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 188-195.	2.8	18
187	Separation of substrates and closely related glucuronide metabolites using various chromatographic modes. Journal of Chromatography A, 2016, 1435, 54-65.	3.7	18
188	A workflow for column interchangeability in liquid chromatography using modeling software and quality-by-design principles. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 220-225.	2.8	18
189	Natural compounds analysis using liquid and supercritical fluid chromatography hyphenated to mass spectrometry: Evaluation of a new design of atmospheric pressure ionization source. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1083, 1-11.	2.3	18
190	Is hydrophobic interaction chromatography the most suitable technique to characterize site-specific antibody-drug conjugates?. Journal of Chromatography A, 2019, 1586, 149-153.	3.7	18
191	Targeted Bottom-up Characterization of Recombinant Monoclonal Antibodies by Multidimensional LC/MS. Analytical Chemistry, 2020, 92, 13420-13426.	6.5	18
192	Non-invasive targeted iontophoretic delivery of cetuximab to skin. Expert Opinion on Drug Delivery, 2020, 17, 589-602.	5.0	18
193	Inter-laboratory study to evaluate the performance of automated online characterization of antibody charge variants by multi-dimensional LC-MS/MS. Talanta, 2021, 234, 122628.	5.5	18
194	An attempt to characterize the human Chorionic Gonadotropin protein by reversed phase liquid chromatography coupled with high-resolution mass spectrometry at the intact level. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 35-44.	2.8	17
195	Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 2: Evaluation of recent stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 2019, 172, 320-328.	2.8	17
196	Glycan-Mediated Technology for Obtaining Homogeneous Site-Specific Conjugated Antibody–Drug Conjugates: Synthesis and Analytical Characterization by Using Complementary Middle-up LC/HRMS Analysis. Analytical Chemistry, 2020, 92, 8170-8177.	6.5	17
197	Evaluation of a new wide-pore superficially porous material with carbon core and nanodiamond-polymer shell for the separation of proteins. Journal of Chromatography A, 2015, 1414, 51-59.	3.7	16
198	Evaluation of new superficially porous particles with carbon core and nanodiamond–polymer shell for proteins characterization. Journal of Pharmaceutical and Biomedical Analysis, 2015, 104, 130-136.	2.8	16

#	Article	IF	CITATIONS
199	Negative gradient slope methods to improve the separation of closely eluting proteins. Journal of Chromatography A, 2021, 1635, 461743.	3.7	16
200	State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals, 2021, 14, 498.	3.8	16
201	Apparent efficiency of serially coupled columns in isocratic and gradient elution modes. Journal of Chromatography A, 2018, 1571, 121-131.	3.7	15
202	Bispecific antibody characterization by a combination of intact and site-specific/chain-specific LC/MS techniques. Talanta, 2022, 236, 122836.	5.5	15
203	The impact of low adsorption surfaces for the analysis of DNA and RNA oligonucleotides. Journal of Chromatography A, 2022, 1677, 463324.	3.7	15
204	Alternative mobile phase additives for the characterization of protein biopharmaceuticals in liquid chromatography – Mass spectrometry. Analytica Chimica Acta, 2021, 1156, 338347.	5.4	14
205	Ion mobility-high resolution mass spectrometry in doping control analysis. Part II: Comparison of acquisition modes with and without ion mobility. Analytica Chimica Acta, 2021, 1175, 338739.	5.4	14
206	Development of an innovative salt-mediated pH gradient cation exchange chromatography method for the characterization of therapeutic antibodies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1160, 122379.	2.3	13
207	Improving selectivity and performing online on-column fractioning in liquid chromatography for the separation of therapeutic biopharmaceutical products. Journal of Chromatography A, 2020, 1618, 460901.	3.7	13
208	Use of Ultra-short Columns for Therapeutic Protein Separations, Part 2: Designing the Optimal Column Dimension for Reversed-Phase Liquid Chromatography. Analytical Chemistry, 2021, 93, 1285-1293.	6.5	13
209	Ultra-short ion-exchange columns for fast charge variants analysis of therapeutic proteins. Journal of Chromatography A, 2021, 1657, 462568.	3.7	13
210	The importance of being metal-free: The critical choice of column hardware for size exclusion chromatography coupled to high resolution mass spectrometry. Analytica Chimica Acta, 2021, 1183, 338987.	5.4	12
211	Quantitative N-Glycan Profiling of Therapeutic Monoclonal Antibodies Performed by Middle-Up Level HILIC-HRMS Analysis. Pharmaceutics, 2021, 13, 1744.	4.5	12
212	Trappingâ€Enrichment Multiâ€dimensional Liquid Chromatography with Onâ€Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
213	Preparative Scale MS-Guided Isolation of Bioactive Compounds Using High-Resolution Flash Chromatography: Antifungals from Chiloscyphus polyanthos as a Case Study. Planta Medica, 2016, 82, 1051-1057.	1.3	11
214	On-tubing fluorescence measurements of the band broadening of contemporary injectors in ultra-high performance liquid chromatography. Journal of Chromatography A, 2018, 1535, 44-54.	3.7	11
215	Evaluation of additives on reversed-phase chromatography of monoclonal antibodies using a 1000â€ [−] Ã stationary phase. Journal of Chromatography A, 2020, 1610, 460562.	3.7	11
216	Supercritical fluid chromatography–mass spectrometry in routine anti-doping analyses: Estimation of retention time variability under reproducible conditions. Journal of Chromatography A, 2020, 1616, 460780.	3.7	11

#	Article	IF	CITATIONS
217	Impact of the column on effluent pH in cation exchange pH gradient chromatography, a practical study. Journal of Chromatography A, 2020, 1626, 461350.	3.7	11
218	Using 1.5Âmm internal diameter columns for optimal compatibility with current liquid chromatographic systems. Journal of Chromatography A, 2021, 1650, 462258.	3.7	11
219	Automated ion exchange chromatography screening combined with in silico multifactorial simulation for efficient method development and purification of biopharmaceutical targets. Analytical and Bioanalytical Chemistry, 2022, 414, 3581-3591.	3.7	11
220	Comparison of various silica-based monoliths for the analysis of large biomoleculesâ€. Journal of Separation Science, 2013, 36, 2231-2243.	2.5	10
221	Impact of particle size gradients on the apparent efficiency of chromatographic columns. Journal of Chromatography A, 2019, 1603, 208-215.	3.7	10
222	Investigating the use of unconventional temperatures in supercritical fluid chromatography. Analytica Chimica Acta, 2020, 1134, 84-95.	5.4	10
223	Automated middle-up approach for the characterization of biotherapeutic products by combining on-line hinge-specific digestion with RPLC-HRMS analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 182, 113130.	2.8	10
224	Prototype sphere-on-sphere silica particles for the separation of large biomolecules. Journal of Chromatography A, 2016, 1431, 94-102.	3.7	9
225	Development of a LC–MS/MS method for the determination of isomeric glutamyl peptides in food ingredients. Journal of Separation Science, 2018, 41, 847-855.	2.5	9
226	Evaluation of Different Tandem MS Acquisition Modes to Support Metabolite Annotation in Human Plasma Using Ultra High-Performance Liquid Chromatography High-Resolution Mass Spectrometry for Untargeted Metabolomics. Metabolites, 2020, 10, 464.	2.9	9
227	Importance of vial shape and type on the reproducibility of size exclusion chromatography measurement of monoclonal antibodies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 131-138.	2.3	8
228	New wide-pore superficially porous stationary phases with low hydrophobicity applied for the analysis of monoclonal antibodies. Journal of Chromatography A, 2021, 1642, 462050.	3.7	8
229	Direct coupling of size exclusion chromatography and mass spectrometry for the characterization of complex monoclonal antibody products. Journal of Separation Science, 2022, 45, 1997-2007.	2.5	8
230	Aptamer-based immunoaffinity LC-MS using an ultra-short column for rapid attomole level quantitation of intact mAbs. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1173, 122694.	2.3	7
231	Monitoring multiple quality attributes of a complex Fc-fusion protein during cell culture production processes by mD-LC-MS peptide mapping. Talanta, 2022, 246, 123519.	5.5	7
232	Sub/supercritical fluid chromatography versus liquid chromatography for peptide analysis. Journal of Chromatography A, 2022, 1676, 463282.	3.7	6
233	Influence of connection tubing in modern size exclusion chromatography and its impact on the characterization of mAbs. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 22-32.	2.8	5
234	Practical considerations on the particle size and permeability of ion-exchange columns applied to biopharmaceutical separations. Journal of Chromatography A, 2019, 1604, 460487.	3.7	5

#	Article	IF	CITATIONS
235	Apparent efficiency of serially coupled columns in gradient elution liquid chromatography: Extension to the combination of any column formats. Journal of Chromatography A, 2019, 1588, 159-162.	3.7	5
236	Isolation and Identification of Isocoumarin Derivatives With Specific Inhibitory Activity Against Wnt Pathway and Metabolome Characterization of Lasiodiplodia venezuelensis. Frontiers in Chemistry, 2021, 9, 664489.	3.6	5
237	Fast Optimization of Supercritical Fluid Chromatography–Mass Spectrometry Interfacing Using Prediction Equations. Analytical Chemistry, 2022, 94, 4841-4849.	6.5	5
238	Ultraâ€high performance supercritical fluid chromatography coupled to tandem mass spectrometry for antidoping analyses: Assessment of the interâ€laboratory reproducibility with urine samples. Analytical Science Advances, 2021, 2, 68-75.	2.8	4
239	Improved separation by at-column dilution in preparative hydrophilic interaction chromatography. Journal of Chromatography A, 2018, 1532, 136-143.	3.7	3
240	Trappingâ€Enrichment Multiâ€dimensional Liquid Chromatography with Onâ€Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie, 2022, 134, .	2.0	3
241	Analytical challenges encountered and the potential of supercritical fluid chromatography: A perspective of five experts. Analytical Science Advances, 2021, 2, 76-80.	2.8	2
242	Fast Afucosylation Profiling of Clycoengineered Antibody Subunits by Middle-Up Mass Spectrometry. Methods in Molecular Biology, 2021, 2271, 73-83.	0.9	2
243	Characterization of Glycosylated Proteins at Subunit Level by HILIC/MS. Methods in Molecular Biology, 2021, 2271, 85-95.	0.9	2
244	A simple mathematical treatment for predicting linear solvent strength behaviour in gradient elution: application to biomolecules. Journal of Separation Science, 2022, , .	2.5	2
245	Theory and Practice of UHPLC and UHPLC–MS. , 2017, , 1-38.		1
246	Algorithms to optimize multi-column chromatographic separations of proteins. Journal of Chromatography A, 2021, 1637, 461838.	3.7	1
247	Empirical correction of non-linear pH gradients and a tool for application to protein ion exchange chromatography. Journal of Chromatography A, 2021, 1651, 462320.	3.7	1
248	A New Practice to Monitor the Fabrication Process of Fab-Targeting Ligands from Bevacizumab by LC-MS: Preparation and Analytical Characterization. Scientia Pharmaceutica, 2022, 90, 5.	2.0	1
249	Editorial for the special issue entitled "Biopharmaceuticals 2016â€. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 1-2.	2.3	Ο
250	Evaluation of thermally pretreated silica stationary phases under hydrophilic interaction chromatography conditions. Journal of Separation Science, 2016, 39, 1611-1618.	2.5	0
251	5. What is the potential of SFC-MS for doping control analysis?. , 2018, , 111-128.		0
252	Editorial for the special issue entitled "supercritical fluid chromatography – mass spectrometry― Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1095, 275.	2.3	0

#	Article	IF	CITATIONS
253	Editorial for the virtual special issue SEP 2019. Journal of Chromatography A, 2020, 1619, 460888.	3.7	0
254	Editorial for the special issue titled "Biopharmaceuticals 2020― Journal of Pharmaceutical and Biomedical Analysis, 2020, 183, 113198.	2.8	0