
Dale G Nagle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer chimera of stapled oncolytic peptide coupled with anti-PD-L1 peptide boosts immunotherapy of colorectal cancer. Theranostics, 2022, 12, 3456-3473.	10.0	10
2	Stapled Wasp Venom-Derived Oncolytic Peptides with Side Chains Induce Rapid Membrane Lysis and Prolonged Immune Responses in Melanoma. Journal of Medicinal Chemistry, 2021, 64, 5802-5815.	6.4	18
3	Application of omics- and multi-omics-based techniques for natural product target discovery. Biomedicine and Pharmacotherapy, 2021, 141, 111833.	5.6	29
4	Emerging protein degradation strategies: expanding the scope to extracellular and membrane proteins. Theranostics, 2021, 11, 8337-8349.	10.0	33
5	Coix Seed Oil Exerts an Anti–Triple-Negative Breast Cancer Effect by Disrupting miR-205/S1PR1 Axis. Frontiers in Pharmacology, 2020, 11, 529962.	3.5	17
6	Genus Liparis: A review of its traditional uses in China, phytochemistry and pharmacology. Journal of Ethnopharmacology, 2019, 234, 154-171.	4.1	10
7	The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death and Disease, 2018, 9, 165.	6.3	58
8	Biochemical and Anti-Triple Negative Metastatic Breast Tumor Cell Properties of Psammaplins. Marine Drugs, 2018, 16, 442.	4.6	18
9	Strategy for Modern Research of Traditional Chinese Medicine Formulae. , 2018, , 3-18.		2
10	Network Pharmacology in the Study of TCM Formulae. , 2018, , 69-95.		1
11	Application of Intestinal Flora in the Study of TCM Formulae. , 2018, , 97-112.		3
12	Theories and Methods for the Evaluation of the Pharmacodynamic Material Basis of Traditional Chinese Medicine. , 2018, , 19-30.		0
13	Application of Connectivity Map (CMAP) Database to Research on Traditional Chinese Medicines (TCMs). , 2018, , 113-119.		Ο
14	Application of Systems Biology in the Research of TCM Formulae. , 2018, , 31-67.		5
15	Hypoxia-inducible factor-1α inhibition modulates airway hyperresponsiveness and nitric oxide levels in a BALB/c mouse model of asthma. Clinical Immunology, 2017, 176, 94-99.	3.2	22
16	Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells. Marine Drugs, 2015, 13, 1552-1568.	4.6	44
17	Sampangine (a Copyrine Alkaloid) Exerts Biological Activities through Cellular Redox Cycling of Its Quinone and Semiquinone Intermediates. Journal of Natural Products, 2015, 78, 3018-3023.	3.0	9
18	Toxins in Botanical Dietary Supplements: Blue Cohosh Components Disrupt Cellular Respiration and Mitochondrial Membrane Potential. Journal of Natural Products, 2014, 77, 111-117.	3.0	13

2

#	Article	IF	CITATIONS
19	Structures and Potential Antitumor Activity of Sesterterpenes from the Marine Sponge Hyrtios communis. Journal of Natural Products, 2013, 76, 1492-1497.	3.0	24
20	Semisynthetic studies identify mitochondria poisons from botanical dietary supplements—Geranyloxycoumarins from Aegle marmelos. Bioorganic and Medicinal Chemistry, 2013, 21, 1795-1803.	3.0	10
21	Comparative Study of Chromatographic Medium-Associated Mass and Potential Antitumor Activity Loss with Bioactive Extracts. Journal of Natural Products, 2013, 76, 642-647.	3.0	10
22	Inducers of Hypoxic Response: Marine Sesquiterpene Quinones Activate HIF-1. Journal of Natural Products, 2013, 76, 1175-1181.	3.0	30
23	Glycolysis Inhibitor Screening Identifies the Bis-geranylacylphloroglucinol Protonophore Moronone from <i>Moronobea coccinea</i> . Journal of Natural Products, 2012, 75, 2216-2222.	3.0	12
24	Mechanism-based Screening for Cancer Therapeutics with Examples from the Discovery of Marine Natural Product-based HIF-1 Inhibitors. , 2012, , 1111-1144.		2
25	Structures and Mechanisms of Antitumor Agents: Xestoquinones Uncouple Cellular Respiration and Disrupt HIF Signaling in Human Breast Tumor Cells. Journal of Natural Products, 2012, 75, 1553-1559.	3.0	22
26	Natural and Semisynthetic Mammea-Type Isoprenylated Dihydroxycoumarins Uncouple Cellular Respiration. Journal of Natural Products, 2011, 74, 240-248.	3.0	18
27	Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF21± and Elongation Factor eEF2. Journal of Natural Products, 2011, 74, 1894-1901.	3.0	15
28	Thyrsiferol inhibits mitochondrial respiration and HIF-1 activation. Phytochemistry Letters, 2011, 4, 75-78.	1.2	16
29	Natural Products as Inhibitors of Hypoxia-Inducible Factor-1. , 2011, , 187-264.		0
30	The marine sponge metabolite mycothiazole: A novel prototype mitochondrial complex I inhibitor. Bioorganic and Medicinal Chemistry, 2010, 18, 5988-5994.	3.0	46
31	Mammea E/BB, an Isoprenylated Dihydroxycoumarin Protonophore That Potently Uncouples Mitochondrial Electron Transport, Disrupts Hypoxic Signaling in Tumor Cells. Journal of Natural Products, 2010, 73, 1868-1872.	3.0	22
32	The Alternative Medicine Pawpaw and Its Acetogenin Constituents Suppress Tumor Angiogenesis via the HIF-1/VEGF Pathway. Journal of Natural Products, 2010, 73, 956-961.	3.0	39
33	Natural Products as Probes of Selected Targets in Tumor Cell Biology and Hypoxic Signaling. , 2010, , 651-683.		3
34	Methylalpinumisoflavone Inhibits Hypoxia-inducible Factor-1 (HIF-1) Activation by Simultaneously Targeting Multiple Pathways. Journal of Biological Chemistry, 2009, 284, 5859-5868.	3.4	65
35	Marine natural products as inhibitors of hypoxic signaling in tumors. Phytochemistry Reviews, 2009, 8, 415-429.	6.5	37
36	The <i>Caulerpa</i> Pigment Caulerpin Inhibits HIF-1 Activation and Mitochondrial Respiration. Journal of Natural Products, 2009, 72, 2104-2109.	3.0	52

#	Article	IF	CITATIONS
37	Lipophilic 2,5-Disubstituted Pyrroles from the Marine Sponge <i>Mycale</i> sp. Inhibit Mitochondrial Respiration and HIF-1 Activation. Journal of Natural Products, 2009, 72, 1927-1936.	3.0	31
38	Molecular-Targeted Antitumor Agents. 19. Furospongolide from a Marine <i>Lendenfeldia</i> sp. Sponge Inhibits Hypoxia-Inducible Factor-1 Activation in Breast Tumor Cells. Journal of Natural Products, 2008, 71, 1854-1860.	3.0	32
39	Latrunculin A and Its C-17- <i>O</i> -Carbamates Inhibit Prostate Tumor Cell Invasion and HIF-1 Activation in Breast Tumor Cells. Journal of Natural Products, 2008, 71, 396-402.	3.0	62
40	Cytotoxic Metabolites from an Indonesian Sponge <i>Lendenfeldia</i> sp Journal of Natural Products, 2007, 70, 1824-1826.	3.0	61
41	Benzochromenones from the Marine Crinoid Comantheria rotula Inhibit Hypoxia-Inducible Factor-1 (HIF-1) in Cell-Based Reporter Assays and Differentially Suppress the Growth of Certain Tumor Cell Lines. Journal of Natural Products, 2007, 70, 1462-1466.	3.0	25
42	Molecular-Targeted Antitumor Agents. 15. Neolamellarins from the Marine Sponge <i>Dendrilla nigra</i> Inhibit Hypoxia-Inducible Factor-1 Activation and Secreted Vascular Endothelial Growth Factor Production in Breast Tumor Cells. Journal of Natural Products, 2007, 70, 1741-1745.	3.0	59
43	Hypoxia-Selective Antitumor Agents:  Norsesterterpene Peroxides from the Marine Sponge Diacarnus levii Preferentially Suppress the Growth of Tumor Cells under Hypoxic Conditions. Journal of Natural Products, 2007, 70, 130-133.	3.0	25
44	Total Synthesis and Absolute Configuration of Laurenditerpenol: A Hypoxia Inducible Factor-1 Activation Inhibitor. Journal of Medicinal Chemistry, 2007, 50, 6299-6302.	6.4	27
45	Capisterones A and B, which Enhance Fluconazole Activity in Saccharomyces cerevisiae, from the Marine Green Alga Penicillus capitatus. Journal of Natural Products, 2006, 69, 542-546.	3.0	33
46	Bioassay for the Identification of Natural Product-Based Activators of Peroxisome Proliferator-Activated Receptor-γ (PPARγ):  The Marine Sponge Metabolite Psammaplin A Activates PPARγ and Induces Apoptosis in Human Breast Tumor Cells. Journal of Natural Products, 2006, 69, 547-552.	3.0	44
47	Sodwanone and Yardenone Triterpenes from a South African Species of the Marine SpongeAxinellaInhibit Hypoxia-Inducible Factor-1 (HIF-1) Activation in Both Breast and Prostate Tumor Cells. Journal of Natural Products, 2006, 69, 1715-1720.	3.0	49
48	Natural Product-Based Inhibitors of Hypoxia-Inducible Factor-1 (HIF-1). Current Drug Targets, 2006, 7, 355-369.	2.1	87
49	Carbazole Is a Naturally Occurring Inhibitor of Angiogenesis and Inflammation Isolated from Antipsoriatic Coal Tar. Journal of Investigative Dermatology, 2006, 126, 1396-1402.	0.7	60
50	Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67, 1849-1855.	2.9	486
51	Natural Product-Derived Small Molecule Activators of Hypoxia-Inducible Factor-1 (HIF-1). Current Pharmaceutical Design, 2006, 12, 2673-2688.	1.9	62
52	Naturally Occurring Proteasome Inhibitors from Mate Tea (Ilex paraguayensis) Serve as Models for Topical Proteasome Inhibitors. Journal of Investigative Dermatology, 2005, 125, 207-212.	0.7	31
53	Terpenoid Tetrahydroisoquinoline Alkaloids Emetine, Klugine, and Isocephaeline Inhibit the Activation of Hypoxia-Inducible Factor-1 in Breast Tumor Cells. Journal of Natural Products, 2005, 68, 947-950.	3.0	62
54	Saururus cernuus lignans—Potent small molecule inhibitors of hypoxia-inducible factor-1. Biochemical and Biophysical Research Communications, 2005, 333, 1026-1033.	2.1	66

#	Article	IF	CITATIONS
55	Secondary Metabolites from Marine Cyanobacteria and Algae Inhibit LFA-1/ICAM-1 Mediated Cell Adhesion. Planta Medica, 2004, 70, 127-131.	1.3	33
56	Laurenditerpenol, a New Diterpene from the Tropical Marine AlgaLaurenciaintricatathat Potently Inhibits HIF-1 Mediated Hypoxic Signaling in Breast Tumor Cells. Journal of Natural Products, 2004, 67, 2002-2007.	3.0	84
57	Antifungal Cyclopentenediones from Piper coruscans. Journal of the American Chemical Society, 2004, 126, 6872-6873.	13.7	49
58	Hypoxia-Inducible Factor-1 Activation by (â^')-Epicatechin Gallate:Â Potential Adverse Effects of Cancer Chemoprevention with High-Dose Green Tea Extracts. Journal of Natural Products, 2004, 67, 2063-2069.	3.0	90
59	Molecular-Targeted Antitumor Agents:Â TheSaururuscernuusDineolignans Manassantin B and 4-O-Demethylmanassantin B Are Potent Inhibitors of Hypoxia-Activated HIF-1. Journal of Natural Products, 2004, 67, 767-771.	3.0	109
60	Mechanism Targeted Discovery of Antitumor Marine Natural Products. Current Medicinal Chemistry, 2004, 11, 1725-1756.	2.4	64
61	Secondary Metabolites from Plants and Marine Organisms as Selective Anti-Cyanobacterial Agents. ACS Symposium Series, 2003, , 179-194.	0.5	2
62	Acetylenic Acids Inhibiting Azole-ResistantCandidaalbicansfromPentagoniagigantifolia. Journal of Natural Products, 2003, 66, 1132-1135.	3.0	31
63	Genipatriol, a New Cycloartane Triterpene fromGenipa spruceana. Journal of Natural Products, 2003, 66, 398-400.	3.0	14
64	Reversal of Fluconazole Resistance in Multidrug Efflux-Resistant Fungi by the Dysidea arenaria Sponge Sterol 91±,111±-Epoxycholest-7-ene-31²,51±,61±,19-tetrol 6-Acetate. Journal of Natural Products, 2003, 66, 1618-1	62 ³ .0	34
65	Marine Natural Products as Novel Antioxidant Prototypes. Journal of Natural Products, 2003, 66, 605-608.	3.0	228
66	Genome-wide Expression Profiling of the Response to Polyene, Pyrimidine, Azole, and Echinocandin Antifungal Agents in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 34998-35015.	3.4	185
67	Algal and Cyanobacterial Metabolites as Agents for Pest Management. , 2002, , 171-195.		3
68	Antifungal properties of cyanobacteria and algae: ecological and agricultural implications. , 2002, , 7-32.		11
69	The chemistry and chemical ecology of biologically active cyanobacterial metabolites. , 2002, , 33-56.		5
70	A New Dehydrogeranylgeraniol Antioxidant from Saururus cernuus that Inhibits Intracellular Reactive Oxygen Species (ROS)-Catalyzed Oxidation within HL-60 Cells. Journal of Natural Products, 2001, 64, 693-695.	3.0	22
71	A New 2D-TLC Bioautography Method for the Discovery of Novel Antifungal Agents To Control Plant Pathogens. Journal of Natural Products, 2000, 63, 1050-1054.	3.0	108
72	A New Indanone from the Marine CyanobacteriumLyngbya majusculaThat Inhibits Hypoxia-Induced Activation of the VEGF Promoter in Hep3B Cells. Journal of Natural Products, 2000, 63, 1431-1433.	3.0	91

#	Article	IF	CITATIONS
73	PRODUCTION OF SECONDARY METABOLITES BY FILAMENTOUS TROPICAL MARINE CYANOBACTERIA: ECOLOGICAL FUNCTIONS OF THE COMPOUNDS. Journal of Phycology, 1999, 35, 1412-1421.	2.3	121
74	Symplostatin 2:  A Dolastatin 13 Analogue from the Marine Cyanobacterium Symploca hydnoides. Journal of Natural Products, 1999, 62, 655-658.	3.0	135
75	Tumonoic Acids, Novel Metabolites from a Cyanobacterial Assemblage ofLyngbya majusculaandSchizothrix calcicola. Journal of Natural Products, 1999, 62, 464-467.	3.0	28
76	Chemical defense of a marine cyanobacterial bloom. Journal of Experimental Marine Biology and Ecology, 1998, 225, 29-38.	1.5	86
77	Structure-Activity Analysis of the Interaction of Curacin A, the Potent Colchicine Site Antimitotic Agent, with Tubulin and Effects of Analogs on the Growth of MCF-7 Breast Cancer Cells. Molecular Pharmacology, 1998, 53, 62-76.	2.3	275
78	Symplostatin 1:Â A Dolastatin 10 Analogue from the Marine CyanobacteriumSymplocahydnoides. Journal of Natural Products, 1998, 61, 1075-1077.	3.0	135
79	Isolation, Structure Determination, and Biological Activity of Dolastatin 12 and Lyngbyastatin 1 fromLyngbya majuscula/Schizothrix calcicolaCyanobacterial Assemblages. Journal of Natural Products, 1998, 61, 1221-1225.	3.0	112
80	Pitiamide A, a new chlorinated lipid from a mixed marine cyanobacterial assemblage. Tetrahedron Letters, 1997, 38, 6969-6972.	1.4	29
81	Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish. Marine Ecology - Progress Series, 1997, 147, 21-29.	1.9	85
82	Ypaoamide, a new broadly acting feeding deterrent from the marine cyanobacterium Lyngbya majuscula. Tetrahedron Letters, 1996, 37, 6263-6266.	1.4	91
83	Limitations in the use of tubulin polymerization assays as a screen for the identification of new antimitotic agents: The potent marine natural product curacin A as an example. Drug Development Research, 1995, 34, 110-120.	2.9	22
84	Nakienones A-C and nakitriol, new cytotoxic cyclic C11 metabolites from an okinawan cyanobacterial (Synechocystis sp.) overgrowth of coral. Tetrahedron Letters, 1995, 36, 849-852.	1.4	40
85	Absolute configuration of curacin A, a novel antimitotic agent from the tropical marine cyanobacterium Lyngbya majuscula. Tetrahedron Letters, 1995, 36, 1189-1192.	1.4	59
86	Antillatoxin: An Exceptionally Ichthyotoxic Cyclic Lipopeptide from the Tropical Cyanobacterium Lyngbya majuscula. Journal of the American Chemical Society, 1995, 117, 8281-8282.	13.7	155
87	Malyngamide H, an Ichthyotoxic Amide Possessing a New Carbon Skeleton from the Caribbean Cyanobacterium Lyngbya majuscula. Journal of Natural Products, 1995, 58, 764-768.	3.0	68
88	Structure of Curacin A, a Novel Antimitotic, Antiproliferative and Brine Shrimp Toxic Natural Product from the Marine Cyanobacterium Lyngbya majuscula. Journal of Organic Chemistry, 1994, 59, 1243-1245.	3.2	344
89	Structure and stereochemistry of constanolactones A-G, lactonized cyclopropyl oxylipins from the red marine alga Constantinea simplex. Journal of Organic Chemistry, 1994, 59, 7227-7237.	3.2	64
90	Biologically active oxylipins from seaweeds. Hydrobiologia, 1993, 260-261, 653-665.	2.0	40

#	Article	IF	CITATIONS
91	Oxylipins from marine invertebrates. , 1993, , 117-180.		28
92	Biologically active oxylipins from seaweeds. , 1993, , 653-665.		7
93	New Glycosphingolipids from the Marine Sponge Halichondria panicea. Journal of Natural Products, 1992, 55, 1013-1017.	3.0	24
94	Eicosanoids from the Rhodophyta: new metabolism in the algae. Hydrobiologia, 1990, 204-205, 621-628.	2.0	33
95	Isolation and structure of constanolactones A and B, new cyclopropyl hydroxy-eicosanoids from the temperate red alga constantinea simplex. Tetrahedron Letters, 1990, 31, 2995-2998.	1.4	65