
## Ana Maria Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381138/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Revealing antimicrobial resistance profile of the novel probiotic candidate Faecalibacterium prausnitzii DSM 17677. International Journal of Food Microbiology, 2022, 363, 109501.                | 4.7  | 8         |
| 2  | Next-generation probiotics. , 2022, , 483-502.                                                                                                                                                    |      | 1         |
| 3  | Optimization of Raw Ewes' Milk High-Pressure Pre-Treatment for Improved Production of Raw Milk<br>Cheese. Foods, 2022, 11, 435.                                                                   | 4.3  | 6         |
| 4  | Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural<br>Edible Compounds. Foods, 2022, 11, 757.                                                    | 4.3  | 0         |
| 5  | Nutritional, Physicochemical, and Endogenous Enzyme Assessment of Raw Milk Preserved under<br>Hyperbaric Storage at Variable Room Temperature. ACS Food Science & Technology, 2022, 2, 961-974.   | 2.7  | 8         |
| 6  | Spray-Drying Encapsulation of the Live Biotherapeutic Candidate Akkermansia muciniphila DSM 22959<br>to Survive Aerobic Storage. Pharmaceuticals, 2022, 15, 628.                                  | 3.8  | 8         |
| 7  | Interplay between probiotics and prebiotics for human nutrition and health. , 2022, , 231-254.                                                                                                    |      | 1         |
| 8  | A culture-sensitive semi-quantitative FFQ for use among the adult population in Nairobi, Kenya:<br>development, validity and reproducibility. Public Health Nutrition, 2021, 24, 834-844.         | 2.2  | 4         |
| 9  | Effect of high pressure preâ€ŧreatment on raw ewes' milk and on subsequently produced cheese throughout ripening. Journal of the Science of Food and Agriculture, 2021, 101, 3975-3980.           | 3.5  | 1         |
| 10 | Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods, 2021, 10, 516.                                                            | 4.3  | 39        |
| 11 | A Starch-Milk Paste Enables the Incorporation of Ripened Cheese in Novel Fresh Cheese. Food<br>Technology and Biotechnology, 2021, 59, 507-518.                                                   | 2.1  | 1         |
| 12 | In Vitro Gastrointestinal Digestion Impact on the Antioxidant Activity of Extracts Produced from the<br>Macroalgae Gracilaria gracilis and Ulva rigida. , 2021, 6, .                              |      | 0         |
| 13 | Evolving trends in next-generation probiotics: a 5W1H perspective. Critical Reviews in Food Science and Nutrition, 2020, 60, 1783-1796.                                                           | 10.3 | 49        |
| 14 | Health benefits and bioavailability of marine resources components that contribute to health <i>–<br/>what's new?</i> . Critical Reviews in Food Science and Nutrition, 2020, 60, 3680-3692.      | 10.3 | 32        |
| 15 | Uncovering Akkermansia muciniphila resilience or susceptibility to different temperatures, atmospheres and gastrointestinal conditions. Anaerobe, 2020, 61, 102135.                               | 2.1  | 14        |
| 16 | Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media.<br>Carbohydrate Polymers, 2020, 231, 115703.                                                    | 10.2 | 10        |
| 17 | Bioconversion of Fish Discards through the Production of Lactic Acid Bacteria and Metabolites:<br>Sustainable Application of Fish Peptones in Nutritive Fermentation Media. Foods, 2020, 9, 1239. | 4.3  | 5         |
| 18 | Probing the structure-holding interactions in cheeses by dissociating agents – A review and an experimental evaluation with emmental cheese. Current Research in Food Science, 2020, 3, 201-206.  | 5.8  | 13        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Editorial: The Sustainability Challenge: New Perspectives on the Use of Microbial Approaches and Their Impact on Food and Feed. Frontiers in Nutrition, 2020, 7, 118.                                                 | 3.7 | 0         |
| 20 | Production of Marine Probiotic Bacteria in a Cost-Effective Marine Media Based on Peptones Obtained from Discarded Fish By-Products. Microorganisms, 2020, 8, 1121.                                                   | 3.6 | 10        |
| 21 | The Combined Effect of Pressure and Temperature on Kefir Production—A Case Study of Food<br>Fermentation in Unconventional Conditions. Foods, 2020, 9, 1133.                                                          | 4.3 | 3         |
| 22 | Commensal Obligate Anaerobic Bacteria and Health: Production, Storage, and Delivery Strategies.<br>Frontiers in Bioengineering and Biotechnology, 2020, 8, 550.                                                       | 4.1 | 40        |
| 23 | <i>Serra da Estrela</i> cheese: A review. Journal of Food Processing and Preservation, 2020, 44, e14412.                                                                                                              | 2.0 | 7         |
| 24 | Chlorogenic acids composition and the impact of in vitro gastrointestinal digestion on espresso coffee from single-dose capsule. Food Research International, 2020, 134, 109223.                                      | 6.2 | 21        |
| 25 | Assessment of the efficacy of the utilisation of conventional and electric toothbrushes by the older adults. Gerodontology, 2020, 37, 297-302.                                                                        | 2.0 | 5         |
| 26 | Nanoprobiotics: When Technology Meets Gut Health. Nanotechnology in the Life Sciences, 2020, ,<br>389-425.                                                                                                            | 0.6 | 3         |
| 27 | The Biology of Legumes and Their Agronomic, Economic, and Social Impact. , 2020, , 3-25.                                                                                                                              |     | 11        |
| 28 | Foods with microalgae and seaweeds fostering consumers health: a review on scientific and market innovations. Journal of Applied Phycology, 2020, 32, 1789-1802.                                                      | 2.8 | 52        |
| 29 | The use of different fermentative approaches on Paracoccus denitrificans: Effect of high pressure and<br>air availability on growth and metabolism. Biocatalysis and Agricultural Biotechnology, 2020, 26,<br>101646. | 3.1 | 2         |
| 30 | The Push, Pull, and Enabling Capacities Necessary for Legume Grain Inclusion into Sustainable<br>Agri-Food Systems and Healthy Diets. World Review of Nutrition and Dietetics, 2020, 121, 193-211.                    | 0.3 | 7         |
| 31 | Valorization of lipid by-products. , 2020, , 133-174.                                                                                                                                                                 |     | 1         |
| 32 | Impact of High-Pressure Processing on Food Quality. , 2019, , 95-131.                                                                                                                                                 |     | 0         |
| 33 | Characterization of Edible Films Based on Alginate or Whey Protein Incorporated with<br>Bifidobacterium animalis subsp. lactis BB-12 and Prebiotics. Coatings, 2019, 9, 493.                                          | 2.6 | 19        |
| 34 | Dataset of the preparation and characterization of an artificial sludge for ecotoxicological purposes. Data in Brief, 2019, 25, 104385.                                                                               | 1.0 | 1         |
| 35 | Sargassum muticum and Osmundea pinnatifida Enzymatic Extracts: Chemical, Structural, and<br>Cytotoxic Characterization. Marine Drugs, 2019, 17, 209.                                                                  | 4.6 | 24        |
| 36 | Analytical approaches for proteomics and lipidomics of arsenic in algae. Comprehensive Analytical<br>Chemistry, 2019, , 145-177.                                                                                      | 1.3 | 3         |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Combined effect of pressure and temperature for yogurt production. Food Research International, 2019, 122, 222-229.                                                                                                                                                  | 6.2  | 19        |
| 38 | Cereal bars functionalized through <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> BB-12 and<br>inulin incorporated in edible coatings of whey protein isolate or alginate. Food and Function, 2019, 10,<br>6892-6902.                                          | 4.6  | 17        |
| 39 | Microbiological In Vivo Production of CLNA as a Tool in the Regulation of Host Microbiota in Obesity<br>Control. Studies in Natural Products Chemistry, 2019, 61, 369-394.                                                                                           | 1.8  | 3         |
| 40 | Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35†MPa) to enhance the production of bioethanol. Food Research International, 2019, 115, 352-359.                                                                                                | 6.2  | 11        |
| 41 | Physicochemical and microbial changes in yogurts produced under different pressure and temperature conditions. LWT - Food Science and Technology, 2019, 99, 423-430.                                                                                                 | 5.2  | 27        |
| 42 | Use of coffee byâ€products for the cultivation of <i>Pleurotus citrinopileatus</i> and <i>Pleurotus salmoneoâ€stramineus</i> and its impact on biological properties of extracts thereof. International Journal of Food Science and Technology, 2018, 53, 1914-1924. | 2.7  | 16        |
| 43 | Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties. Meat Science, 2018, 139, 125-133.                                                                                                                       | 5.5  | 45        |
| 44 | Application of High Pressure with Homogenization, Temperature, Carbon Dioxide, and Cold Plasma for<br>the Inactivation of Bacterial Spores: A Review. Comprehensive Reviews in Food Science and Food<br>Safety, 2018, 17, 532-555.                                   | 11.7 | 37        |
| 45 | Suitable simple and fast methods for selective isolation of phospholipids as a tool for their analysis.<br>Electrophoresis, 2018, 39, 1835-1845.                                                                                                                     | 2.4  | 10        |
| 46 | How dietary intake has been assessed in African countries? A systematic review. Critical Reviews in Food Science and Nutrition, 2018, 58, 1002-1022.                                                                                                                 | 10.3 | 10        |
| 47 | Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Brazilian Journal of Microbiology, 2018, 49, 303-309.                                                                                                     | 2.0  | 70        |
| 48 | Enzymes in Physiological Samples. , 2018, , 138-138.                                                                                                                                                                                                                 |      | 1         |
| 49 | Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA<br>Production in Commercial Semi-Skimmed Milk. Scientific Reports, 2018, 8, 15591.                                                                                | 3.3  | 26        |
| 50 | Physiopathological responses of sole (Solea senegalensis) subjected to bacterial infection and<br>handling stress after probiotic treatment with autochthonous bacteria. Fish and Shellfish<br>Immunology, 2018, 83, 348-358.                                        | 3.6  | 15        |
| 51 | Utilization of glycerol during consecutive cycles of Lactobacillus reuteri fermentation under pressure: The impact on cell growth and fermentation profile. Process Biochemistry, 2018, 75, 39-48.                                                                   | 3.7  | 3         |
| 52 | Microbial Production of Conjugated Linoleic Acid and Conjugated Linolenic Acid Relies on a<br>Multienzymatic System. Microbiology and Molecular Biology Reviews, 2018, 82, .                                                                                         | 6.6  | 51        |
| 53 | In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus.<br>Journal of Functional Foods, 2018, 46, 278-287.                                                                                                            | 3.4  | 38        |
| 54 | Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol. Food Research International, 2018, 113, 424-432.                                                                                                        | 6.2  | 17        |

| #  | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Environmental Footprint of Emerging Technologies, Regulatory and Legislative Issues. , 2018, , 255-276.                                                                                                                                                               |      | 2         |
| 56 | Therapeutic and Nutraceutical Potential of Rosmarinic Acid - Cytoprotective Properties and Pharmacokinetic Profile. Critical Reviews in Food Science and Nutrition, 2017, 57, 00-00.                                                                                  | 10.3 | 65        |
| 57 | Evidences and perspectives in the utilization of CLNA isomers as bioactive compounds in foods.<br>Critical Reviews in Food Science and Nutrition, 2017, 57, 2611-2622.                                                                                                | 10.3 | 33        |
| 58 | Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. LWT - Food<br>Science and Technology, 2017, 76, 209-215.                                                                                                                     | 5.2  | 44        |
| 59 | Effect of probiotic co-cultures on physico-chemical and biochemical properties of small ruminants'<br>fermented milk. International Dairy Journal, 2017, 72, 29-35.                                                                                                   | 3.0  | 10        |
| 60 | Effect of supplementation with probiotic lactic acid bacteria, separately or combined, on acid and sugar production in goat †coalho' cheese. LWT - Food Science and Technology, 2017, 75, 710-718.                                                                    | 5.2  | 22        |
| 61 | Technological stability of solid lipid nanoparticles loaded with phenolic compounds: Drying process and stability along storage. Journal of Food Engineering, 2017, 196, 1-10.                                                                                        | 5.2  | 19        |
| 62 | Chemical and structural characterization of Pholiota nameko extracts with biological properties.<br>Food Chemistry, 2017, 216, 176-185.                                                                                                                               | 8.2  | 27        |
| 63 | Bioactive Polysaccharides Extracts fromSargassum muticumby High Hydrostatic Pressure. Journal of Food Processing and Preservation, 2017, 41, e12977.                                                                                                                  | 2.0  | 9         |
| 64 | Biotechnological Production of Conjugated Fatty Acids With Biological Properties. , 2017, , 127-178.                                                                                                                                                                  |      | 0         |
| 65 | Valorization of By-Products from Commercial Fish Species: Extraction and Chemical Properties of Skin Gelatins. Molecules, 2017, 22, 1545.                                                                                                                             | 3.8  | 37        |
| 66 | Pedobacter lusitanus sp. nov., isolated from sludge of a deactivated uranium mine. International<br>Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1339-1348.                                                                                         | 1.7  | 26        |
| 67 | Isolation and Analysis of Phospholipids in Dairy Foods. Journal of Analytical Methods in Chemistry, 2016, 2016, 1-12.                                                                                                                                                 | 1.6  | 35        |
| 68 | Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches. International Journal of Nanomedicine, 2016, Volume 11, 3621-3640.                                                                              | 6.7  | 48        |
| 69 | InÂvitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT<br>- Food Science and Technology, 2016, 73, 131-139.                                                                                                              | 5.2  | 60        |
| 70 | Microwaveâ€assisted extraction in goji berries: effect on composition and bioactivity, evaluated through conventional and nonconventional methodologies. International Journal of Food Science and Technology, 2016, 51, 1401-1408.                                   | 2.7  | 8         |
| 71 | Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp. lactis<br>Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of<br>creamy goat cheese. Food and Function, 2016, 7, 4356-4371. | 4.6  | 21        |
| 72 | Effects of dietary exposure to herbicide and of the nutritive quality of contaminated food on the reproductive output of Daphnia magna. Aquatic Toxicology, 2016, 179, 1-7.                                                                                           | 4.0  | 16        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage. Food and Function, 2016, 7, 3273-3282.                                                                                                  | 4.6  | 33        |
| 74 | A feasibility study of <i>Lactobacillus plantarum</i> in fruit powdersÂafter processing and storage.<br>International Journal of Food Science and Technology, 2016, 51, 381-388.                                                      | 2.7  | 22        |
| 75 | Edible films as carrier for lactic acid bacteria. LWT - Food Science and Technology, 2016, 73, 543-550.                                                                                                                               | 5.2  | 89        |
| 76 | Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions. Colloids and Surfaces B: Biointerfaces, 2016, 139, 277-284.                   | 5.0  | 37        |
| 77 | Resistant starch production in wheat bread: effect of ingredients, baking conditions and storage.<br>European Food Research and Technology, 2016, 242, 1747-1753.                                                                     | 3.3  | 31        |
| 78 | Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innovative Food Science and Emerging Technologies, 2016, 33, 319-326.                                                | 5.6  | 49        |
| 79 | Effect of chronic consumption of blackberry extract on high-fat induced obesity in rats and its correlation with metabolic and brain outcomes. Food and Function, 2016, 7, 127-139.                                                   | 4.6  | 21        |
| 80 | Fermentation of bioactive solid lipid nanoparticles by human gut microflora. Food and Function, 2016, 7, 516-529.                                                                                                                     | 4.6  | 31        |
| 81 | The Legume Grains: When Tradition Goes Hand in Hand with Nutrition. , 2016, , 189-208.                                                                                                                                                |      | 1         |
| 82 | Considerations about the in situ derivatization and fractionation of EFA and NEFA in biological and food samples. MethodsX, 2015, 2, 475-484.                                                                                         | 1.6  | 13        |
| 83 | In vitro evaluation of yacon (Smallanthus sonchifolius) tuber flour prebiotic potential. Food and<br>Bioproducts Processing, 2015, 95, 96-105.                                                                                        | 3.6  | 44        |
| 84 | Characterization of solid lipid nanoparticles produced with carnauba wax for rosmarinic acid oral delivery. RSC Advances, 2015, 5, 22665-22673.                                                                                       | 3.6  | 66        |
| 85 | Stability of bioactive solid lipid nanoparticles loaded with herbal extracts when exposed to simulated gastrointestinal tract conditions. Food Research International, 2015, 78, 131-140.                                             | 6.2  | 37        |
| 86 | Effect of the incorporation of salted additives on probiotic whey cheeses. Food Bioscience, 2015, 10, 8-17.                                                                                                                           | 4.4  | 9         |
| 87 | Marine Functional Foods. , 2015, , 969-994.                                                                                                                                                                                           |      | 13        |
| 88 | In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): dynamic modulation of the intestinal microbiota and metabolomic output. Food and Function, 2015, 6, 3316-3322.                                     | 4.6  | 35        |
| 89 | Solid Lipid Nanoparticles as Oral Delivery Systems of Phenolic Compounds: Overcoming<br>Pharmacokinetic Limitations for Nutraceutical Applications. Critical Reviews in Food Science and<br>Nutrition, 2015, 57, 00-00.               | 10.3 | 43        |
| 90 | Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P.<br>salmoneo stramineus, Pholiota nameko and Hericium erinaceus. Journal of Food Science and<br>Technology, 2015, 52, 6927-6939. | 2.8  | 42        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Antioxidant properties of sterilized yacon (Smallanthus sonchifolius) tuber flour. Food Chemistry, 2015, 188, 504-509.                                                                                                                          | 8.2  | 33        |
| 92  | Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chemistry, 2015, 183, 197-207.                                                                                                 | 8.2  | 241       |
| 93  | Impact of Enzyme- and Ultrasound-Assisted Extraction Methods on Biological Properties of Red,<br>Brown, and Green Seaweeds from the Central West Coast of Portugal. Journal of Agricultural and<br>Food Chemistry, 2015, 63, 3177-3188.         | 5.2  | 130       |
| 94  | Evaluation of the interactions between rosmarinic acid and bovine milk casein. RSC Advances, 2015, 5, 88529-88538.                                                                                                                              | 3.6  | 20        |
| 95  | Endocrine Disruptor DDE Associated with a High-Fat Diet Enhances the Impairment of Liver Fatty Acid<br>Composition in Rats. Journal of Agricultural and Food Chemistry, 2015, 63, 9341-9348.                                                    | 5.2  | 37        |
| 96  | Effects of added Lactobacillus acidophilus and Bifidobacterium lactis probiotics on the quality characteristics of goat ricotta and their survival under simulated gastrointestinal conditions. Food Research International, 2015, 76, 828-838. | 6.2  | 64        |
| 97  | Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin,<br>β-Lactoglobulin and Lactoferrin. Food Research International, 2015, 77, 450-459.                                                               | 6.2  | 80        |
| 98  | Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. Food and Bioproducts Processing, 2015, 93, 90-97.                                                                                     | 3.6  | 34        |
| 99  | Disposable sensors for environmental monitoring of lead, cadmium and mercury. TrAC - Trends in Analytical Chemistry, 2015, 64, 183-190.                                                                                                         | 11.4 | 82        |
| 100 | Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chemistry, 2015, 172, 462-468.                                                                                                                 | 8.2  | 144       |
| 101 | Green analytical methodologies for the discovery of bioactive compounds from marine sources.<br>Trends in Environmental Analytical Chemistry, 2014, 3-4, 43-52.                                                                                 | 10.3 | 16        |
| 102 | Effects of hemicellulose-derived saccharides on behavior of Lactobacilli under simulated gastrointestinal conditions. Food Research International, 2014, 64, 880-888.                                                                           | 6.2  | 26        |
| 103 | Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid.<br>Colloids and Surfaces B: Biointerfaces, 2014, 115, 109-117.                                                                                      | 5.0  | 52        |
| 104 | Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.). Plant Physiology and<br>Biochemistry, 2014, 85, 21-30.                                                                                                                | 5.8  | 24        |
| 105 | Addition of probiotic bacteria in a semi-hard goat cheese (coalho): Survival to simulated<br>gastrointestinal conditions and inhibitory effect against pathogenic bacteria. Food Research<br>International, 2014, 64, 241-247.                  | 6.2  | 53        |
| 106 | Green Analytical Methodologies for Preparation of Extracts and Analysis of Bioactive Compounds.<br>Comprehensive Analytical Chemistry, 2014, , 59-78.                                                                                           | 1.3  | 38        |
| 107 | Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. Journal of Functional Foods, 2014, 6, 438-449.                                                                                 | 3.4  | 121       |
| 108 | In vitro evaluation of "horchata―co-products as carbon source for probiotic bacteria growth. Food<br>and Bioproducts Processing, 2013, 91, 279-286.                                                                                             | 3.6  | 19        |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Development of Probiotic Tablets Using Microparticles: Viability Studies and Stability Studies. AAPS<br>PharmSciTech, 2013, 14, 121-127.                                                          | 3.3  | 37        |
| 110 | Nutritional, textural and sensory properties of Coalho cheese made of goats', cows' milk and their mixture. LWT - Food Science and Technology, 2013, 50, 538-544.                                 | 5.2  | 78        |
| 111 | Bioactivity of probiotic whey cheese: characterization of the content of peptides and organic acids.<br>Journal of the Science of Food and Agriculture, 2013, 93, 1458-1465.                      | 3.5  | 23        |
| 112 | Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food<br>Hydrocolloids, 2013, 32, 425-431.                                                                    | 10.7 | 96        |
| 113 | Strategies based on silica monoliths for removing pollutants from wastewater effluents: A review.<br>Science of the Total Environment, 2013, 461-462, 126-138.                                    | 8.0  | 28        |
| 114 | Antioxidative Peptides: Trends and Perspectives for Future Research. Current Medicinal Chemistry, 2013, 20, 4575-4594.                                                                            | 2.4  | 40        |
| 115 | Analytical strategies for characterization and validation of functional dairy foods. TrAC - Trends in Analytical Chemistry, 2012, 41, 27-45.                                                      | 11.4 | 10        |
| 116 | Production of conjugated linoleic acid by foodâ€grade bacteria: A review. International Journal of<br>Dairy Technology, 2012, 65, 467-481.                                                        | 2.8  | 41        |
| 117 | Optical Fiber Bioanalyzer Based on Enzymatic Coating Matrix for Catecholamines and Their<br>Metabolites Assessment in Patients With Down Syndrome. IEEE Sensors Journal, 2012, 12, 76-84.         | 4.7  | 3         |
| 118 | Evaluation of chitoligosaccharides effect upon probiotic bacteria. International Journal of<br>Biological Macromolecules, 2012, 50, 148-152.                                                      | 7.5  | 12        |
| 119 | Marine biotechnology advances towards applications in new functional foods. Biotechnology<br>Advances, 2012, 30, 1506-1515.                                                                       | 11.7 | 102       |
| 120 | Storage Stability of Lactobacillus paracasei as Free Cells or Encapsulated in Alginate-Based<br>Microcapsules in Low pH Fruit Juices. Food and Bioprocess Technology, 2012, 5, 2748-2757.         | 4.7  | 51        |
| 121 | Encapsulation of probiotic strains in plain or cysteineâ€supplemented alginate improves viability at<br>storage below freezing temperatures. Engineering in Life Sciences, 2012, 12, 457-465.     | 3.6  | 29        |
| 122 | Effects of encapsulation on the viability of probiotic strains exposed to lethal conditions.<br>International Journal of Food Science and Technology, 2012, 47, 416-421.                          | 2.7  | 16        |
| 123 | Lipolysis in probiotic and synbiotic cheese: The influence of probiotic bacteria, prebiotic compounds and ripening time on free fatty acid profiles. Food Chemistry, 2012, 131, 1414-1421.        | 8.2  | 62        |
| 124 | Metabolic Profiling of Potential Probiotic or Synbiotic Cheeses by Nuclear Magnetic Resonance (NMR)<br>Spectroscopy. Journal of Agricultural and Food Chemistry, 2011, 59, 4955-4961.             | 5.2  | 51        |
| 125 | Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 2011, 44, 465-470.                                    | 6.2  | 450       |
| 126 | Influence of l-cysteine, oxygen and relative humidity upon survival throughout storage of probiotic bacteria in whey protein-based microcapsules. International Dairy Journal, 2011, 21, 869-876. | 3.0  | 94        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | The potential effect of FOS and inulin upon probiotic bacterium performance in curdled milk matrices.<br>LWT - Food Science and Technology, 2011, 44, 100-108.                                                                                     | 5.2  | 63        |
| 128 | Rheological, textural and microstructural features of probiotic whey cheeses. LWT - Food Science and Technology, 2011, 44, 75-81.                                                                                                                  | 5.2  | 16        |
| 129 | Microbiological, rheological and sensory characterization of Portuguese model cheeses<br>manufactured from several milk sources. LWT - Food Science and Technology, 2011, 44, 2244-2252.                                                           | 5.2  | 6         |
| 130 | On the viability of five probiotic strains when immobilised on various polymers. International Journal of Dairy Technology, 2011, 64, 137-144.                                                                                                     | 2.8  | 19        |
| 131 | Technological Optimization of Manufacture of Probiotic Whey Cheese Matrices. Journal of Food<br>Science, 2011, 76, E203-11.                                                                                                                        | 3.1  | 10        |
| 132 | Quantitative and qualitative determination of CLA produced by Bifidobacterium and lactic acid bacteria by combining spectrophotometric and Ag+-HPLC techniques. Food Chemistry, 2011, 125, 1373-1378.                                              | 8.2  | 71        |
| 133 | Optical fibre-based methodology for screening the effect of probiotic bacteria on conjugated linoleic acid (CLA) in curdled milk. Food Chemistry, 2011, 127, 222-227.                                                                              | 8.2  | 17        |
| 134 | Incorporation of Probiotic Bacteria in Whey Cheese: Decreasing the Risk of Microbial Contamination.<br>Journal of Food Protection, 2011, 74, 1194-1199.                                                                                            | 1.7  | 24        |
| 135 | Influence of bacterial dynamics upon the final characteristics of model Portuguese traditional cheeses. Food Microbiology, 2010, 27, 339-346.                                                                                                      | 4.2  | 16        |
| 136 | How three adventitious lactic acid bacteria affect proteolysis and organic acid production in model<br>Portuguese cheeses manufactured from several milk sources and two alternative coagulants. Journal<br>of Dairy Science, 2010, 93, 1335-1344. | 3.4  | 14        |
| 137 | Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of<br>Dairy Science, 2010, 93, 437-455.                                                                                                        | 3.4  | 275       |
| 138 | Bacterial Dynamics in Model Cheese Systems, Aiming at Safety and Quality of Portuguese-Style<br>Traditional Ewe's Cheeses. Journal of Food Protection, 2009, 72, 2243-2251.                                                                        | 1.7  | 10        |
| 139 | Microbiological, biochemical and compositional changes during ripening of São Jorge – a raw milk<br>cheese from the Azores (Portugal). Food Chemistry, 2009, 112, 131-138.                                                                         | 8.2  | 11        |
| 140 | Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy, 2009, 109, 854-860.                                                                   | 1.9  | 78        |
| 141 | Microstructure of cheese: Processing, technological and microbiological considerations. Trends in Food Science and Technology, 2009, 20, 213-219.                                                                                                  | 15.1 | 24        |
| 142 | Proteolysis in model Portuguese cheeses: Effects of rennet and starter culture. Food Chemistry, 2008, 108, 862-868.                                                                                                                                | 8.2  | 34        |
| 143 | Sweet whey cheese matrices inoculated with the probiotic strainLactobacillusÂparacaseiLAFTI®L26.<br>Dairy Science and Technology, 2008, 88, 649-665.                                                                                               | 2.2  | 27        |
| 144 | Microbiological, biochemical and biogenic amine profiles of Terrincho cheese manufactured in several dairy farms. International Dairy Journal, 2008, 18, 631-640.                                                                                  | 3.0  | 82        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Contribution of Specific Adventitious Microorganisms toward Evolution of Sugar and Organic Acid<br>Profiles throughout Ripening of Model Portuguese Cheeses. Food Science and Technology<br>International, 2008, 14, 233-240. | 2.2  | 4         |
| 146 | Monitoring and Identification of Bacteria Associated with Safety Concerns in the Manufacture of São<br>Jorge, a Portuguese Traditional Cheese from Raw Cow's Milk. Journal of Food Protection, 2008, 71,<br>986-992.          | 1.7  | 26        |
| 147 | Bovine whey proteins – Overview on their main biological properties. Food Research International, 2007, 40, 1197-1211.                                                                                                        | 6.2  | 414       |
| 148 | Pathogenic, Commensal and Beneficial Microorganisms in Foods. , 2007, , 177-201.                                                                                                                                              |      | 1         |
| 149 | Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin<br>I-converting enzyme (ACE)-inhibitory activity. Food Chemistry, 2007, 105, 647-656.                                             | 8.2  | 155       |
| 150 | Exploitation of Microorganisms by the Food and Beverage Industry. , 2007, , 153-176.                                                                                                                                          |      | 0         |
| 151 | Manufacturing of fermented goat milk with a mixed starter culture of Bifidobacterium animalis and<br>Lactobacillus acidophilus in a controlled bioreactor. Letters in Applied Microbiology, 2006, 42,<br>060329075718007.     | 2.2  | 22        |
| 152 | Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. International Dairy Journal, 2005, 15, 921-927.                                        | 3.0  | 82        |
| 153 | Incorporation and Survival of Probiotic Bacteria in Whey Cheese Matrices. Journal of Food Science, 2005, 70, M160-M165.                                                                                                       | 3.1  | 18        |
| 154 | Interrelationships among Microbiological, Physicochemical, and Biochemical Properties of Terrincho<br>Cheese, with Emphasis on Biogenic Amines. Journal of Food Protection, 2004, 67, 2779-2785.                              | 1.7  | 44        |
| 155 | Development of a Chemically Defined Medium for Growth of Bifidobacterium animalis. Journal of Food Science, 2003, 68, 2742-2746.                                                                                              | 3.1  | 8         |
| 156 | The determination and distribution of nucleotides in dairy products using HPLC and diode array detection. Food Chemistry, 2001, 74, 239-244.                                                                                  | 8.2  | 35        |
| 157 | Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science and Technology, 1999, 10, 139-157.             | 15.1 | 512       |
| 158 | VIABILITY OF BIFIDOBACTERIUM LA CTIS AND LACTOBACILL US ACIDOPHILUS IN MILK: SODIUM CHLORIDE CONCENTRATION AND STORAGE TEMPERATURE. Journal of Food Processing and Preservation, 1998, 22, 221-240.                           | 2.0  | 14        |
| 159 | Caprine cheese with probiotic strains: the effects of ripening temperature and relative humidity on proteolysis and lipolysis. European Food Research and Technology, 1998, 207, 386-394.                                     | 0.6  | 11        |
| 160 | Determination of sugars, and some other compounds in infant formulae, follow-up milks and human milk by HPLC-UV/RI. Carbohydrate Polymers, 1998, 37, 225-229.                                                                 | 10.2 | 36        |
| 161 | Use of small ruminants' milk supplemented with available nitrogen as growth media<br>forBifidobacterium lactisandLactobacillus acidophilus. Journal of Applied Microbiology, 1998, 85,<br>839-848.                            | 3.1  | 21        |
| 162 | Survival of probiotic microbial strains in a cheese matrix during ripening: Simulation of rates of salt diffusion and microorganism survival. Journal of Food Engineering, 1998, 36, 281-301.                                 | 5.2  | 63        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Development of Probiotic Cheese Manufactured from Goat Milk: Response Surface Analysis via<br>Technological Manipulation. Journal of Dairy Science, 1998, 81, 1492-1507.                                                                  | 3.4 | 96        |
| 164 | Growth Enhancement of Bifidobacterium lactis Bo and Lactobacillus acidophilus Ki by Milk<br>Hydrolyzates. Journal of Dairy Science, 1998, 81, 2817-2825.                                                                                  | 3.4 | 98        |
| 165 | Development, Validation and Application of a Method for Monitoring of Essential and Semi-Essential<br>Free Amino Acids in Infant Formulae and Follow-up Milks Using HPLC/Diode Array Detection<br>Analytical Sciences, 1998, 14, 827-830. | 1.6 | 3         |
| 166 | Comparison of Two Processes for Isolation of Exopolysaccharide Produced byLactobacillus acidophilus. , 0, , 280-285.                                                                                                                      |     | 1         |
| 167 | Yogucheeses – Yoghurts fortified with melted cheese: Microstructural, textural and rheological characterisation. International Journal of Dairy Technology, 0, , .                                                                        | 2.8 | 1         |
| 168 | Stability of a Fermented Milk Enriched With Microbial CLA/CLNA. , 0, , .                                                                                                                                                                  |     | 0         |