
Flaviano Giorgini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1380542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular Localization of Kynurenine 3-Monooxygenase in the Brain: Challenging the Dogma. Antioxidants, 2022, 11, 315.	5.1	7
2	Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer's Disease. Biomedicines, 2022, 10, 1141.	3.2	9
3	RAB39B is redistributed in dementia with Lewy bodies and is sequestered within al ² plaques and Lewy bodies. Brain Pathology, 2021, 31, 120-132.	4.1	11
4	Advantages of brain penetrating inhibitors of kynurenine-3-monooxygenase for treatment of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 2021, 697, 108702.	3.0	12
5	Mitochondrial SIRT3 confers neuroprotection in Huntington's disease by regulation of oxidative challenges and mitochondrial dynamics. Free Radical Biology and Medicine, 2021, 163, 163-179.	2.9	42
6	Ablation of kynurenine 3-monooxygenase rescues plasma inflammatory cytokine levels in the R6/2 mouse model of Huntington's disease. Scientific Reports, 2021, 11, 5484.	3.3	14
7	Dysfunction of <scp>RAB39Bâ€</scp> Mediated Vesicular Trafficking in Lewy Body Diseases. Movement Disorders, 2021, 36, 1744-1758.	3.9	12
8	Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington's disease. Journal of Neurochemistry, 2021, 158, 539-553.	3.9	18
9	Inflammation control and improvement of cognitive function in COVID-19 infections: is there a role for kynurenine 3-monooxygenase inhibition?. Drug Discovery Today, 2021, 26, 1473-1481.	6.4	20
10	Esculetin Provides Neuroprotection against Mutant Huntingtin-Induced Toxicity in Huntington's Disease Models. Pharmaceuticals, 2021, 14, 1044.	3.8	2
11	Tubulin and Tubulin Posttranslational Modifications in Alzheimer's Disease and Vascular Dementia. Frontiers in Aging Neuroscience, 2021, 13, 730107.	3.4	9
12	Rab8 Promotes Mutant HTT Aggregation, Reduces Neurodegeneration, and Ameliorates Behavioural Alterations in a Drosophila Model of Huntington's Disease. Journal of Huntington's Disease, 2020, 9, 253-263.	1.9	8
13	A novel role for kynurenine 3-monooxygenase in mitochondrial dynamics. PLoS Genetics, 2020, 16, e1009129.	3.5	11
14	A brain-permeable inhibitor of the neurodegenerative disease target kynurenine 3-monooxygenase prevents accumulation of neurotoxic metabolites. Communications Biology, 2019, 2, 271.	4.4	36
15	DJ-1 in Parkinson's Disease: Clinical Insights and Therapeutic Perspectives. Journal of Clinical Medicine, 2019, 8, 1377.	2.4	101
16	Drosophila Nrf2/Keap1 Mediated Redox Signaling Supports Synaptic Function and Longevity and Impacts on Circadian Activity. Frontiers in Molecular Neuroscience, 2019, 12, 86.	2.9	31
17	The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration. Molecular Neurobiology, 2019, 56, 61-77.	4.0	33
18	Maternal genotype determines kynurenic acid levels in the fetal brain: Implications for the pathophysiology of schizophrenia. Journal of Psychopharmacology, 2018, 32, 1223-1232.	4.0	11

FLAVIANO GIORGINI

#	Article	IF	CITATIONS
19	Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nature Communications, 2018, 9, 3191.	12.8	47
20	Assessing and Modulating Kynurenine Pathway Dynamics in Huntington's Disease: Focus on Kynurenine 3-Monooxygenase. Methods in Molecular Biology, 2018, 1780, 397-413.	0.9	8
21	Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biology, 2018, 16, e2003611.	5.6	28
22	Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders. Biological Psychiatry, 2017, 82, 756-765.	1.3	57
23	Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain, 2017, 140, 1399-1419.	7.6	153
24	Protein phosphatase 1 regulates huntingtin exon 1 aggregation and toxicity. Human Molecular Genetics, 2017, 26, 3763-3775.	2.9	32
25	Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5435-5440.	7.1	117
26	Glycation potentiates neurodegeneration in models of Huntington's disease. Scientific Reports, 2016, 6, 36798.	3.3	27
27	Connectivity mapping uncovers small molecules that modulate neurodegeneration in Huntington's disease models. Journal of Molecular Medicine, 2016, 94, 235-245.	3.9	14
28	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
29	shRNA-Based Screen Identifies Endocytic Recycling Pathway Components That Act as Genetic Modifiers of Alpha-Synuclein Aggregation, Secretion and Toxicity. PLoS Genetics, 2016, 12, e1005995.	3.5	68
30	Modeling Huntington Disease in Yeast and Invertebrates. , 2015, , 557-572.		0
31	The kynurenine pathway and neurodegenerative disease. Seminars in Cell and Developmental Biology, 2015, 40, 134-141.	5.0	223
32	Rab11 modulates α-synuclein-mediated defects in synaptic transmission and behaviour. Human Molecular Genetics, 2015, 24, 1077-1091.	2.9	94
33	Synapses and α-synuclein signalling in disease. Cogent Biology, 2015, 1, 1085295.	1.7	2
34	Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7012-7017.	7.1	45
35	A Drosophila RNAi collection is subject to dominant phenotypic effects. Nature Methods, 2014, 11, 222-223.	19.0	100
36	The small GTPase Rab11 co-localizes with Â-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Human Molecular Genetics, 2014, 23, 6732-6745.	2.9	73

FLAVIANO GIORGINI

#	Article	IF	CITATIONS
37	α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiology of Disease, 2014, 70, 149-161.	4.4	84
38	Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease. Human Molecular Genetics, 2014, 23, 3129-3137.	2.9	38
39	Aggregation-Prone Proteins Modulate Huntingtin Inclusion Body Formation in Yeast. PLOS Currents, 2014, 6, .	1.4	5
40	Understanding neuronal dysfunction and loss in neurodegenerative disease. Journal of Molecular Medicine, 2013, 91, 651-652.	3.9	4
41	The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease. Journal of Molecular Medicine, 2013, 91, 705-713.	3.9	42
42	Parkinson's disease-associated mutations in DJ-1 modulate its dimerization in living cells. Journal of Molecular Medicine, 2013, 91, 599-611.	3.9	31
43	Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nature Genetics, 2013, 45, 1249-1254.	21.4	117
44	Targeted Deletion of Kynurenine 3-Monooxygenase in Mice. Journal of Biological Chemistry, 2013, 288, 36554-36566.	3.4	99
45	Structural basis of kynurenine 3-monooxygenase inhibition. Nature, 2013, 496, 382-385.	27.8	124
46	Rab11 as a modulator of synaptic transmission. Communicative and Integrative Biology, 2013, 6, e26807.	1.4	13
47	A flexible polyglutamine hinge opens new doors for understanding huntingtin function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14516-14517.	7.1	8
48	β-Defensin Genomic Copy Number Does Not Influence the Age of Onset in Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 107-124.	1.9	1
49	A Novel Sit4 Phosphatase Complex Is Involved in the Response to Ceramide Stress in Yeast. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-9.	4.0	6
50	Choosing and using <i>Drosophila</i> models to characterize modifiers of Huntington's disease. Biochemical Society Transactions, 2012, 40, 739-745.	3.4	17
51	Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington's disease. Human Molecular Genetics, 2012, 21, 2912-2922.	2.9	68
52	Drosophila eye color mutants as therapeutic tools for Huntington disease. Fly, 2012, 6, 117-120.	1.7	34
53	Kynurenine 3-Monooxygenase Inhibition in Blood Ameliorates Neurodegeneration. Cell, 2011, 145, 863-874.	28.9	435
54	The Kynurenine Pathway Modulates Neurodegeneration in a Drosophila Model of Huntington's Disease. Current Biology, 2011, 21, 961-966.	3.9	231

FLAVIANO GIORGINI

#	Article	IF	CITATIONS
55	Modeling Huntington disease in yeast: Perspectives and future directions. Prion, 2011, 5, 269-276.	1.8	49
56	Is modulating translation a therapeutic option for Huntington's disease?. Neurodegenerative Disease Management, 2011, 1, 89-91.	2.2	1
57	Functional Gene Expression Profiling in Yeast Implicates Translational Dysfunction in Mutant Huntingtin Toxicity. Journal of Biological Chemistry, 2011, 286, 410-419.	3.4	51
58	Modeling Huntington disease in yeast: Perspectives and future directions. Prion, 2011, 5, 269-276.	1.8	27
59	Targeting Kynurenine 3-Monooxygenase (KMO): Implications for Therapy in Huntingtons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 791-800.	1.4	71
60	Histone Deacetylase Inhibition Modulates Kynurenine Pathway Activation in Yeast, Microglia, and Mice Expressing a Mutant Huntingtin Fragment. Journal of Biological Chemistry, 2008, 283, 7390-7400.	3.4	86
61	Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. Biotechnology Journal, 2006, 1, 258-269.	3.5	48
62	A network of protein interactions determines polyglutamine toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11051-11056.	7.1	141
63	A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nature Genetics, 2005, 37, 526-531.	21.4	323
64	Connecting the dots in Huntington's disease with protein interaction networks. Genome Biology, 2005, 6, 210.	9.6	35