Junwei Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1379643/publications.pdf Version: 2024-02-01

LUNIWELLANC

#	Article	IF	CITATIONS
1	Superior Volumetric Capability Dualâ€lon Batteries Enabled by A Microsize Niobium Tungsten Oxide Anode. Advanced Functional Materials, 2022, 32, .	14.9	14
2	Superiority of Cubic Perovskites Oxides with Strong Bâ€O Hybridization for Oxygenâ€Anion Intercalation Pseudocapacitance. Advanced Functional Materials, 2022, 32, .	14.9	6
3	Nitrogen-doped carbon nanotubes by multistep pyrolysis process as a promising anode material for lithium ion hybrid capacitors. Chinese Chemical Letters, 2020, 31, 2239-2244.	9.0	7
4	Constructing consistent pore microstructures of bacterial cellulose-derived cathode and anode materials for high energy density sodium-ion capacitors. New Journal of Chemistry, 2020, 44, 1865-1871.	2.8	10
5	Highly conductive KNiF3@carbon nanotubes composite materials with cross-linked structure for high performance supercapacitor. Journal of Power Sources, 2020, 474, 228603.	7.8	30
6	3D high-density MXene@MnO ₂ microflowers for advanced aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 24635-24644.	10.3	82
7	Anchoring nitrogen-doped carbon particles on lithium titanate to enhance its lithium storage performance. Journal of Electroanalytical Chemistry, 2020, 871, 114293.	3.8	3
8	Carbon Nanosheet Anode for Sodiumâ€ion Storage and Its Application in Sodiumâ€ion Hybrid Capacitors. ChemistrySelect, 2020, 5, 5824-5830.	1.5	6
9	High lithium anodic performance of flower-like carbon nanoflakes derived from MOF based on double ligands. Journal of Alloys and Compounds, 2019, 806, 520-528.	5.5	11
10	Mn and Co co-doped perovskite fluorides KNiF3 with enhanced capacitive performance. Journal of Colloid and Interface Science, 2019, 557, 546-555.	9.4	30
11	Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. Journal of Materials Chemistry A, 2019, 7, 9247-9252.	10.3	112
12	The roles of graphene in advanced Li-ion hybrid supercapacitors. Journal of Energy Chemistry, 2018, 27, 43-56.	12.9	64
13	Solarâ€Thermal Driven Selfâ€Heating of Microâ€Supercapacitors at Low Temperatures. Solar Rrl, 2018, 2, 1800223.	5.8	36
14	Sulfur Powder as a Reducing Agent to Synthesize the Ni@Ni(OH)2 Flower-Like Material for Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2018, 18, 7732-7738.	0.9	9
15	A Highâ€Performance Sodiumâ€ion Hybrid Capacitor Constructed by Metal–Organic Framework–Derived Anode and Cathode Materials. Advanced Functional Materials, 2018, 28, 1800757.	14.9	205
16	Controllable synthesis of Mn ₃ O ₄ nanodots@nitrogen-doped graphene and its application for high energy density supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5523-5531.	10.3	57
17	Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 292-302.	10.3	118
18	Coupling effect between ultra-small Mn 3 O 4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Materials, 2017, 6, 53-60.	18.0	72

Junwei Lang

#	Article	IF	CITATIONS
19	3D Hierarchical Co/CoOâ€Grapheneâ€Carbonized Melamine Foam as a Superior Cathode toward Longâ€Life Lithium Oxygen Batteries. Advanced Functional Materials, 2016, 26, 1354-1364.	14.9	206
20	Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability. Journal of Materials Chemistry A, 2016, 4, 9760-9766.	10.3	84
21	Carbon encapsulated RuO ₂ nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8180-8189.	10.3	59
22	A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8316-8327.	10.3	138
23	Mesoporous Ni-doped MnCo ₂ O ₄ hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. Journal of Materials Chemistry A, 2016, 4, 18392-18400.	10.3	68
24	Facile Synthesis of Fe ₂ O ₃ Nano-Dots@Nitrogen-Doped Graphene for Supercapacitor Electrode with Ultralong Cycle Life in KOH Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 9335-9344.	8.0	200
25	Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Materials, 2015, 7, e183-e183.	7.9	109
26	Fast and Large Lithium Storage in 3D Porous VN Nanowires–Graphene Composite as a Superior Anode Toward Highâ€Performance Hybrid Supercapacitors. Advanced Functional Materials, 2015, 25, 2270-2278.	14.9	379
27	Synthesis of Porous Î′â€MnO ₂ Submicron Tubes as Highly Efficient Electrocatalyst for Rechargeable Li–O ₂ Batteries. ChemSusChem, 2015, 8, 1972-1979.	6.8	42
28	Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO ₂ Using Ionic Liquid Gel Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 25378-25389.	8.0	99
29	A hybrid supercapacitor based on flower-like Co(OH) ₂ and urchin-like VN electrode materials. Journal of Materials Chemistry A, 2014, 2, 12724-12732.	10.3	324
30	Identifying pseudocapacitance of Fe ₂ O ₃ in an ionic liquid and its application in asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14550-14556.	10.3	105
31	Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Advances, 2014, 4, 54662-54667.	3.6	123
32	Effect of surface area and heteroatom of porous carbon materials on electrochemical capacitance in aqueous and organic electrolytes. Science China Chemistry, 2014, 57, 1570-1578.	8.2	33
33	Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets. Journal of Materials Chemistry, 2012, 22, 8853.	6.7	92
34	Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains. Journal of Materials Chemistry, 2011, 21, 13205.	6.7	63