Kausar Mahmood Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1379233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-β/Smad signaling pathway plays a crucial role in patulin-induced pro-fibrotic changes in rat kidney via modulation of slug and snail expression. Toxicology and Applied Pharmacology, 2022, 434, 115819.	2.8	7
2	Transcriptomic and proteomic insights into patulin mycotoxin-induced cancer-like phenotypes in normal intestinal epithelial cells. Molecular and Cellular Biochemistry, 2022, 477, 1405-1416.	3.1	5
3	Ochratoxin A treated rat derived urinary exosomes enhanced cell growth and extracellular matrix production in normal kidney cells through modulation of TGF-β1/smad2/3 signaling pathway. Life Sciences, 2022, 298, 120506.	4.3	1
4	Serum and urine metabolomics analysis reveals the role of altered metabolites in patulin-induced nephrotoxicity. Food Research International, 2022, 156, 111177.	6.2	6
5	Occurrence of Alternariol and Alternariolmonomethyl ether in edible oils: Their thermal stability and intake assessment in state of Uttar Pradesh, India. Journal of Food Science, 2021, 86, 1124-1131.	3.1	3
6	Study of the metabolic alterations in patulin-induced neoplastic transformation in normal intestinal cells. Toxicology Research, 2021, 10, 592-600.	2.1	4
7	Safety studies of Nexrutine, bark extract of Phellodendron amurense through repeated oral exposure to rats for 28 days. Heliyon, 2021, 7, e07654.	3.2	5
8	Safety evaluation of Ochratoxin A and Citrinin after 28 days repeated dose oral exposure to Wistar rats. Regulatory Toxicology and Pharmacology, 2020, 115, 104700.	2.7	3
9	ZnO Nanoparticles Modified with an Amphipathic Peptide Show Improved Photoprotection in Skin. ACS Applied Materials & Interfaces, 2019, 11, 56-72.	8.0	31
10	Alternariol induced proliferation in primary mouse keratinocytes and inflammation in mouse skin is regulated via PGE2/EP2/cAMP/p-CREB signaling pathway. Toxicology, 2019, 412, 79-88.	4.2	12
11	Topical application of Nexrutine inhibits ultraviolet Bâ€induced cutaneous inflammatory responses in <scp>SKH</scp> â€1 hairless mouse. Photodermatology Photoimmunology and Photomedicine, 2018, 34, 82-90.	1.5	9
12	Protective Activity of Silk Sericin against UV Radiation-Induced Skin Damage by Downregulating Oxidative Stress. ACS Applied Bio Materials, 2018, 1, 2120-2132.	4.6	35
13	Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. Advances in Molecular Toxicology, 2018, 12, 69-121.	0.4	38
14	COX-2/EP2-EP4/β-catenin signaling regulates patulin-induced intestinal cell proliferation and inflammation. Toxicology and Applied Pharmacology, 2018, 356, 224-234.	2.8	18
15	Non-invasive Oil-Based Method to Increase Topical Delivery of Nucleic Acids to Skin. Molecular Therapy, 2017, 25, 1342-1352.	8.2	9
16	Aryl Hydrocarbon Receptor Activation Contributes to Benzanthrone-Induced Hyperpigmentation via Modulation of Melanogenic Signaling Pathways. Chemical Research in Toxicology, 2017, 30, 625-634.	3.3	18
17	Toxicological effects of patulin mycotoxin on the mammalian system: an overview. Toxicology Research, 2017, 6, 764-771.	2.1	92
18	Nexrutine inhibits azoxymethaneâ€induced colonic aberrant crypt formation in rat colon and induced apoptotic cell death in colon adenocarcinoma cells. Molecular Carcinogenesis, 2016, 55, 1262-1274.	2.7	12

#	Article	IF	CITATIONS
19	UVB exposure enhanced the dermal penetration of zinc oxide nanoparticles and induced inflammatory responses through oxidative stress mediated by MAPKs and NF-κB signaling in SKH-1 hairless mouse skin. Toxicology Research, 2016, 5, 1066-1077.	2.1	17
20	UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 807, 15-24.	1.7	32
21	UVB exposure enhanced benzanthrone-induced inflammatory responses in SKH-1 mouse skin by activating the expression of COX-2 and iNOS through MAP kinases/NF-κB/AP-1 signalling pathways. Food and Chemical Toxicology, 2016, 96, 183-190.	3.6	19
22	Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. Journal of Controlled Release, 2016, 222, 159-168.	9.9	33
23	Dietary administration of Nexrutine inhibits rat liver tumorigenesis and induces apoptotic cell death in human hepatocellular carcinoma cells. Toxicology Reports, 2015, 2, 1-11.	3.3	13
24	EGFRâ€mediated Akt and MAPKs signal pathways play a crucial role in patulinâ€induced cell proliferation in primary murine keratinocytes via modulation of <i>Cyclin D1</i> and <i>COXâ€2</i> expression. Molecular Carcinogenesis, 2014, 53, 988-998.	2.7	20
25	Skin tumorigenic potential of benzanthrone: Prevention by ascorbic acid. Food and Chemical Toxicology, 2013, 59, 687-695.	3.6	4
26	Ochratoxin A-induced cell proliferation and tumor promotion in mouse skin by activating the expression of cyclin-D1 and cyclooxygenase-2 through nuclear factor-kappa B and activator protein-1. Carcinogenesis, 2013, 34, 647-657.	2.8	29
27	Nexrutine(R) inhibits tumorigenesis in mouse skin and induces apoptotic cell death in human squamous carcinoma A431 and human melanoma A375 cells. Carcinogenesis, 2012, 33, 1909-1918.	2.8	28
28	Topical Application of Ochratoxin A Causes DNA Damage and Tumor Initiation in Mouse Skin. PLoS ONE, 2012, 7, e47280.	2.5	42
29	Role of mitogen activated protein kinases in skin tumorigenicity of Patulin. Toxicology and Applied Pharmacology, 2011, 257, 264-271.	2.8	46
30	Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicological Sciences, 2011, 122, 557-566.	3.1	68
31	Potentiation of tumour promotion by topical application of argemone oil/isolated sanguinarine alkaloid in a model of mouse skin carcinogenesis. Chemico-Biological Interactions, 2010, 188, 591-597.	4.0	6
32	Skin tumor promotion by argemone oil/alkaloid in mice: Evidence for enhanced cell proliferation, ornithine decarboxylase, cyclooxygenase-2 and activation of MAPK/NF-ήB pathway. Food and Chemical Toxicology, 2010, 48, 132-138.	3.6	21
33	Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice. Toxicology and Applied Pharmacology, 2009, 234, 192-201.	2.8	75
34	Patulin in apple juices: Incidence and likely intake in an Indian population. Food Additives and Contaminants: Part B Surveillance, 2008, 1, 140-146.	2.8	32
35	Multiple Signaling Pathways Are Responsible for Prostaglandin E2–Induced Murine Keratinocyte Proliferation. Molecular Cancer Research, 2008, 6, 1003-1016.	3.4	69
36	Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin. Carcinogenesis, 2007, 28, 2063-2068.	2.8	43

#	Article	IF	CITATIONS
37	Protective effect of bioantioxidants on argemone oil/sanguinarine alkaloid induced genotoxicity in mice. Cancer Letters, 2006, 244, 109-118.	7.2	18
38	Correlation of DNA damage in epidemic dropsy patients to carcinogenic potential of argemone oil and isolated sanguinarine alkaloid in mice. International Journal of Cancer, 2005, 117, 709-717.	5.1	49
39	In vivo DNA damaging potential of sanguinarine alkaloid, isolated from argemone oil, using alkaline Comet assay in mice. Food and Chemical Toxicology, 2005, 43, 147-153.	3.6	53
40	Unequivocal evidence of genotoxic potential of argemone oil in mice. International Journal of Cancer, 2004, 112, 890-895.	5.1	41