Matthew L Steinhauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/137739/publications.pdf

Version: 2024-02-01

54 papers 6,456 citations

201674 27 h-index 53 g-index

56 all docs

56
docs citations

56 times ranked 10766 citing authors

#	Article	IF	CITATIONS
1	A Cycle of Inflammatory Adipocyte Death and Regeneration in Murine Adipose Tissue. Diabetes, 2022, 71, 412-423.	0.6	4
2	Pulse-Chase Proteomics of the App Knockin Mouse Models of Alzheimer's Disease Reveals that Synaptic Dysfunction Originates in Presynaptic Terminals. Cell Systems, 2021, 12, 141-158.e9.	6.2	32
3	Use of stable isotope-tagged thymidine and multi-isotope imaging mass spectrometry (MIMS) for quantification of human cardiomyocyte division. Nature Protocols, 2021, 16, 1995-2022.	12.0	8
4	Design and rationale of a clinical trial to increase cardiomyocyte division in infants with tetralogy of Fallot. International Journal of Cardiology, 2021, 339, 36-42.	1.7	9
5	High-Fidelity Quantification of Cell Cycle Activity with Multi-Isotope Imaging Mass Spectrometry. Methods in Molecular Biology, 2021, 2158, 257-268.	0.9	2
6	Aging Is a Powerful Risk Factor for Type 2 Diabetes Mellitus Independent of Body Mass Index. Gerontology, 2020, 66, 209-210.	2.8	13
7	Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover. Journal of Cell Biology, 2020, 219, .	5.2	18
8	Imaging Mass Spectrometry Reveals Tumor Metabolic Heterogeneity. IScience, 2020, 23, 101355.	4.1	17
9	Metabolic Analysis at the Nanoscale with Multiâ€lsotope Imaging Mass Spectrometry (MIMS). Current Protocols in Cell Biology, 2020, 88, e111.	2.3	6
10	Exploring Cell Turnover and Metabolism in Health and Disease with NanoSIMS. Microscopy and Microanalysis, 2020, 26, 2506-2506.	0.4	0
11	Prolonged fasting drives a program of metabolic inflammation in human adipose tissue. Molecular Metabolism, 2020, 42, 101082.	6.5	25
12	Fetal alcohol spectrum disorder predisposes to metabolic abnormalities in adulthood. Journal of Clinical Investigation, 2020, 130, 2252-2269.	8.2	31
13	Biological explorations with nanoscale secondary ion mass spectrometry. Journal of Analytical Atomic Spectrometry, 2019, 34, 1534-1545.	3.0	28
14	Control of cytokinesis by \hat{l}^2 -adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Science Translational Medicine, 2019, 11, .	12.4	73
15	Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis. JCI Insight, 2019, 4, .	5.0	19
16	Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm. Stem Cell Research, 2018, 28, 48-55.	0.7	18
17	Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nature Communications, 2018, 9, 1659.	12.8	134
18	The circulating metabolome of human starvation. JCI Insight, 2018, 3, .	5.0	92

#	Article	lF	CITATIONS
19	Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO Journal, 2018, 37, .	7.8	73
20	Amyloid-β Plaques in Clinical Alzheimer's Disease Brain Incorporate Stable Isotope Tracer In Vivo and Exhibit Nanoscale Heterogeneity. Frontiers in Neurology, 2018, 9, 169.	2.4	24
21	Targeting nuclear receptor NR4A1–dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity. Journal of Clinical Investigation, 2018, 128, 4898-4911.	8.2	23
22	Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nature Genetics, 2017, 49, 125-130.	21.4	116
23	Quantitative imaging of deuterated metabolic tracers in biological tissues with nanoscale secondary ion mass spectrometry. International Journal of Mass Spectrometry, 2017, 422, 42-50.	1.5	17
24	Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity. JCI Insight, 2017, 2, e90349.	5.0	66
25	Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses. Molecular Cell, 2016, 62, 21-33.	9.7	23
26	Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Developmental Cell, 2016, 36, 540-549.	7.0	479
27	FGF21 and the late adaptive response to starvation in humans. Journal of Clinical Investigation, 2015, 125, 4601-4611.	8.2	161
28	Loss of White Adipose Hyperplastic Potential Is Associated with Enhanced Susceptibility to Insulin Resistance. Cell Metabolism, 2014, 20, 1049-1058.	16.2	157
29	Quantifying cell division with deuterated water and multi-isotope imaging mass spectrometry (MIMS). Surface and Interface Analysis, 2014, 46, 161-164.	1.8	4
30	Brain stem cell division and maintenance studied using multiâ€isotope imaging mass spectrometry (MIMS). Surface and Interface Analysis, 2014, 46, 140-143.	1.8	7
31	Quasi-simultaneous acquisition of nine secondary ions with seven detectors on NanoSIMS50L: application to biological samples. Surface and Interface Analysis, 2014, 46, 150-153.	1.8	9
32	Approaches to increasing analytical throughput of human samples with multi-isotope imaging mass spectrometry. Surface and Interface Analysis, 2014, 46, 165-168.	1.8	7
33	An Engineered Bivalent Neuregulin Protects Against Doxorubicin-Induced Cardiotoxicity With Reduced Proneoplastic Potential. Circulation, 2013, 128, 152-161.	1.6	84
34	Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 2013, 493, 433-436.	27.8	1,182
35	Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry. Seminars in Cell and Developmental Biology, 2013, 24, 661-667.	5.0	58
36	Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment. Cell, 2013, 152, 570-583.	28.9	839

#	Article	IF	CITATIONS
37	Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell, 2013, 153, 828-839.	28.9	791
38	Pericyte Progenitors at the Crossroads Between Fibrosis and Regeneration. Circulation Research, 2013, 112, 230-232.	4.5	8
39	Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature, 2012, 481, 516-519.	27.8	274
40	Bone Marrow-Derived Cell Therapy Stimulates Endogenous Cardiomyocyte Progenitors and Promotes Cardiac Repair. Cell Stem Cell, 2011, 8, 389-398.	11.1	365
41	Regeneration of the heart. EMBO Molecular Medicine, 2011, 3, 701-712.	6.9	129
42	A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment. Biomedical Microdevices, 2010, 12, 1027-1041.	2.8	40
43	Interleukin-33 Prevents Apoptosis and Improves Survival After Experimental Myocardial Infarction Through ST2 Signaling. Circulation: Heart Failure, 2009, 2, 684-691.	3.9	306
44	Cardiovascular Regeneration: Pushing and Pulling on Progenitors. Cell Stem Cell, 2009, 4, 277-278.	11.1	10
45	Risk stratification and management of aortic stenosis with concomitant left ventricular dysfunction. Current Treatment Options in Cardiovascular Medicine, 2007, 9, 490-500.	0.9	4
46	Novel Protective Effects of Stem Cell Factor in a Murine Model of Acute Septic Peritonitis. American Journal of Pathology, 2000, 157, 1177-1186.	3.8	28
47	Chronic Airway Hyperreactivity, Goblet Cell Hyperplasia, and Peribronchial Fibrosis during Allergic Airway Disease Induced by Aspergillus fumigatus. American Journal of Pathology, 2000, 156, 723-732.	3.8	173
48	Exaggerated Hepatic Injury Due to Acetaminophen Challenge in Mice Lacking C-C Chemokine Receptor 2. American Journal of Pathology, 2000, 156, 1245-1252.	3.8	128
49	Therapeutic Use of Chemokines. Current Pharmaceutical Design, 2000, 6, 651-663.	1.9	12
50	Novel CXCR2â€dependent liver regenerative qualities of ELRâ€containing CXC chemokines. FASEB Journal, 1999, 13, 1565-1574.	0.5	110
51	New Frontiers in Cytokine Involvement during Experimental Sepsis. ILAR Journal, 1999, 40, 142-150.	1.8	8
52	Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney International, 1998, 54, 2152-2159.	5 . 2	116
53	Macrophage/fibroblast coculture induces macrophage inflammatory protein- $1\hat{l}\pm$ production mediated by intercellular adhesion molecule-1 and oxygen radicals. Journal of Leukocyte Biology, 1998, 64, 636-641.	3.3	46
54	Therapeutic Effects of Nitric Oxide Inhibition during Experimental Fecal Peritonitis: Role of Interleukin-10 and Monocyte Chemoattractant Protein 1. Infection and Immunity, 1998, 66, 650-655.	2.2	43