
Xiao-Fan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1377342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression. Nature Cell Biology, 2022, 24, 230-241.	10.3	84
2	Resident memory TÂcells in tumor-distant tissues fortify against metastasis formation. Cell Reports, 2021, 35, 109118.	6.4	17
3	PPDPF alleviates hepatic steatosis through inhibition of mTOR signaling. Nature Communications, 2021, 12, 3059.	12.8	18
4	TCR repertoire characteristics predict clinical response to adoptive CTL therapy against nasopharyngeal carcinoma. Oncolmmunology, 2021, 10, 1955545.	4.6	6
5	Cellular senescence: from anti-cancer weapon to anti-aging target. Science China Life Sciences, 2020, 63, 332-342.	4.9	29
6	BMP10 suppresses hepatocellular carcinoma progression via PTPRS–STAT3 axis. Oncogene, 2019, 38, 7281-7293.	5.9	19
7	CHML promotes liver cancer metastasis by facilitating Rab14 recycle. Nature Communications, 2019, 10, 2510.	12.8	32
8	Chemerin suppresses hepatocellular carcinoma metastasis through CMKLR1-PTEN-Akt axis. British Journal of Cancer, 2018, 118, 1337-1348.	6.4	62
9	Cilia loss sensitizes cells to transformation by activating the mevalonate pathway. Journal of Experimental Medicine, 2018, 215, 177-195.	8.5	62
10	Transcriptome evidence reveals enhanced autophagy-lysosomal function in centenarians. Genome Research, 2018, 28, 1601-1610.	5.5	36
11	Synthetic lethality between HER2 and transaldolase in intrinsically resistant HER2-positive breast cancers. Nature Communications, 2018, 9, 4274.	12.8	25
12	Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Research, 2018, 28, 625-643.	12.0	37
13	<scp>CD</scp> 36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Reports, 2018, 19, .	4.5	44
14	Distinct Receptor Tyrosine Kinase Subsets Mediate Anti-HER2 Drug Resistance in Breast Cancer. Journal of Biological Chemistry, 2017, 292, 748-759.	3.4	28
15	UHRF1 is required for basal stem cell proliferation in response to airway injury. Cell Discovery, 2017, 3, 17019.	6.7	27
16	TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022145.	5.5	390
17	Carcinogen 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis is accelerated in Smad3 heterozygous mice compared to Smad3 wild type mice. Oncotarget, 2016, 7, 64878-64885.	1.8	6
18	Dimethylfumarate effectively inhibits lymphangiogenesis via p21 induction and G1 cell cycle arrest. Experimental Dermatology, 2016, 25, 200-205.	2.9	12

XIAO-FAN WANG

#	Article	IF	CITATIONS
19	HIF-miR-215-KDM1B promotes glioma-initiating cell adaptation to hypoxia. Cell Cycle, 2016, 15, 1939-1940.	2.6	10
20	Iron overload in hereditary tyrosinemia type 1 induces liver injury through the Sp1/Tfr2/hepcidin axis. Journal of Hepatology, 2016, 65, 137-145.	3.7	22
21	The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer, 2016, 16, 763.	2.6	33
22	Isolation of Glioma-Initiating Cells for Biological Study. Advances in Experimental Medicine and Biology, 2016, 899, 197-209.	1.6	2
23	Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor-Infiltrating Lymphocytes. Cancer Research, 2016, 76, 2394-2405.	0.9	40
24	MiR-215 Is Induced Post-transcriptionally via HIF-Drosha Complex and Mediates Glioma-Initiating Cell Adaptation to Hypoxia by Targeting KDM1B. Cancer Cell, 2016, 29, 49-60.	16.8	95
25	TGF-β-Regulated MicroRNAs and Their Function in Cancer Biology. Methods in Molecular Biology, 2016, 1344, 325-339.	0.9	7
26	MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer. Oncotarget, 2016, 7, 20381-20394.	1.8	52
27	SMAD3 deficiency promotes vessel wall remodeling, collagen fiber reorganization and leukocyte infiltration in an inflammatory abdominal aortic aneurysm mouse model. Scientific Reports, 2015, 5, 10180.	3.3	43
28	Smad3 Signaling Promotes Fibrosis While Preserving Cardiac and Aortic Geometry in Obese Diabetic Mice. Circulation: Heart Failure, 2015, 8, 788-798.	3.9	99
29	A niche role for cancer exosomes in metastasis. Nature Cell Biology, 2015, 17, 709-711.	10.3	101
30	Inflammatory Models Drastically Alter Tumor Growth and the Immune Microenvironment in Hepatocellular Carcinoma. Science Bulletin, 2015, 60, 762-772.	9.0	5
31	Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies. Frontiers of Medicine, 2015, 9, 134-138.	3.4	37
32	EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Research, 2015, 25, 135-138.	12.0	45
33	Intrahepatic landscape of regulatory T-cell subsets in chronically HCV-infected patients with cirrhosis and HCC. Hepatology, 2014, 60, 1461-1462.	7.3	3
34	miR-33a promotes glioma-initiating cell self-renewal via PKA and NOTCH pathways. Journal of Clinical Investigation, 2014, 124, 4489-4502.	8.2	76
35	COUP-TFII and AKT are cancer targets pursued by SCBA award winners. Cell and Bioscience, 2014, 4, 57.	4.8	0
36	The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. National Science Review, 2014, 1, 396-412.	9.5	72

XIAO-FAN WANG

#	Article	IF	CITATIONS
37	Microenvironmental regulation of cancer metastasis by miRNAs. Trends in Cell Biology, 2014, 24, 153-160.	7.9	113
38	Post-transcriptional regulation of MTA family by microRNAs in the context of cancer. Cancer and Metastasis Reviews, 2014, 33, 1011-1016.	5.9	8
39	miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nature Cell Biology, 2013, 15, 284-294.	10.3	312
40	Differential effects of Smad3 targeting in a murine model of chronic kidney disease. Physiological Reports, 2013, 1, e00181.	1.7	13
41	A PK2/Bv8/PROK2 Antagonist Suppresses Tumorigenic Processes by Inhibiting Angiogenesis in Glioma and Blocking Myeloid Cell Infiltration in Pancreatic Cancer. PLoS ONE, 2013, 8, e54916.	2.5	43
42	TGF-β-miR-34a-CCL22 Signaling-Induced Treg Cell Recruitment Promotes Venous Metastases of HBV-Positive Hepatocellular Carcinoma. Cancer Cell, 2012, 22, 291-303.	16.8	466
43	A Novel, Non-Apoptotic Role for Scythe/BAT3: A Functional Switch between the Pro- and Anti-Proliferative Roles of p21 during the Cell Cycle. PLoS ONE, 2012, 7, e38085.	2.5	18
44	Trefoil factor 1 acts to suppress senescence induced by oncogene activation during the cellular transformation process. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6591-6596.	7.1	21
45	Transforming growth factor-? signaling in cancer. Microscopy Research and Technique, 2001, 52, 363-373.	2.2	50
46	The Loss of Smad3 Results in a Lower Rate of Bone Formation and Osteopenia Through Dysregulation of Osteoblast Differentiation and Apoptosis. Journal of Bone and Mineral Research, 2001, 16, 1754-1764.	2.8	153
47	The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology, 2001, 34, 89-100.	7.3	224
48	ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature, 2001, 411, 969-974.	27.8	245
49	Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene, 1999, 18, 2872-2882.	5.9	134
50	Ras induces p21Cip1/Waf1 cyclin kinase inhibitor transcriptionally through Sp1-binding sites. Oncogene, 1999, 18, 6252-6261.	5.9	56