
Sarah Dunstan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. Journal of Immunology, 2022, 208, 1352-1361.	0.4	6
2	Mitigating myopia in tuberculosis. Nature Immunology, 2021, 22, 675-676.	7.0	0
3	A Bayesian approach for estimating typhoid fever incidence from largeâ€scale facilityâ€based passive surveillance data. Statistics in Medicine, 2021, 40, 5853-5870.	0.8	8
4	Burden of enteric fever at three urban sites in Africa and Asia: a multicentre population-based study. The Lancet Global Health, 2021, 9, e1688-e1696.	2.9	42
5	Sources of Multidrug Resistance in Patients With Previous Isoniazid-Resistant Tuberculosis Identified Using Whole Genome Sequencing: A Longitudinal Cohort Study. Clinical Infectious Diseases, 2020, 71, e532-e539.	2.9	13
6	Empirical ways to identify novel Bedaquiline resistance mutations in AtpE. PLoS ONE, 2019, 14, e0217169.	1.1	50
7	Understanding the global tuberculosis epidemic: moving towards routine whole-genome sequencing. International Journal of Tuberculosis and Lung Disease, 2019, 23, 1241-1242.	0.6	4
8	Could omics unlock the secret of surviving tuberculous meningitis?. Lancet Infectious Diseases, The, 2018, 18, 479-480.	4.6	1
9	Xpert Ultra and TB meningitis: advancing towards policy revision?. Annals of Infection, 2018, 2, 6-6.	0.0	0
10	Global expansion of <i>Mycobacterium tuberculosis</i> lineage 4 shaped by colonial migration and local adaptation. Science Advances, 2018, 4, eaat5869.	4.7	130
11	Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nature Genetics, 2018, 50, 849-856.	9.4	167
12	Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study. Lancet Haematology,the, 2018, 5, e333-e345.	2.2	90
13	Bacterial risk factors for treatment failure and relapse among patients with isoniazid resistant tuberculosis. BMC Infectious Diseases, 2018, 18, 112.	1.3	18
14	Characterising private and shared signatures of positive selection in 37 Asian populations. European Journal of Human Genetics, 2017, 25, 499-508.	1.4	22
15	The SIGLEC14 null allele is associated with Mycobacterium tuberculosis- and BCG-induced clinical and immunologic outcomes. Tuberculosis, 2017, 104, 38-45.	0.8	16
16	Leukotriene A4 Hydrolase Genotype and HIV Infection Influence Intracerebral Inflammation and Survival From Tuberculous Meningitis. Journal of Infectious Diseases, 2017, 215, 1020-1028.	1.9	93
17	Human genetic variation in <i>VAC14</i> regulates <i>Salmonella</i> invasion and typhoid fever through modulation of cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7746-E7755.	3.3	46
18	The STRATAA study protocol: a programme to assess the burden of enteric fever in Bangladesh, Malawi and Nepal using prospective population census, passive surveillance, serological studies and healthcare utilisation surveys. BMJ Open, 2017, 7, e016283.	0.8	61

#	Article	IF	CITATIONS
19	A polymorphism in human MR1 is associated with mRNA expression and susceptibility to tuberculosis. Genes and Immunity, 2017, 18, 8-14.	2.2	55
20	Characterisation of the opposing effects of G6PD deficiency on cerebral malaria and severe malarial anaemia. ELife, 2017, 6, .	2.8	64
21	Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nature Genetics, 2016, 48, 556-562.	9.4	147
22	MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes and Immunity, 2016, 17, 419-425.	2.2	41
23	High prevalence of PI resistance in patients failing second-line ART in Vietnam. Journal of Antimicrobial Chemotherapy, 2016, 71, 762-774.	1.3	15
24	LTA4H Genotype Is Associated with Susceptibility to Bacterial Meningitis but Is Not a Critical Determinant of Outcome. PLoS ONE, 2015, 10, e0118789.	1.1	8
25	Second-Line HIV Therapy Outcomes and Determinants of Mortality at the Largest HIV Referral Center in Southern Vietnam. Medicine (United States), 2015, 94, e1715.	0.4	18
26	TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis, 2015, 95, 190-196.	0.8	27
27	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	13.7	13,998
28	Common Polymorphisms in the CD43 Gene Region Are Associated with Tuberculosis Disease and Mortality. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 342-348.	1.4	24
29	Variation at HLA-DRB1 is associated with resistance to enteric fever. Nature Genetics, 2014, 46, 1333-1336.	9.4	85
30	Reappraisal of known malaria resistance loci in a large multicenter study. Nature Genetics, 2014, 46, 1197-1204.	9.4	206
31	A polymorphism in human CD1A is associated with susceptibility to tuberculosis. Genes and Immunity, 2014, 15, 195-198.	2.2	29
32	TM4SF20 Ancestral Deletion and Susceptibility to a Pediatric Disorder of Early Language Delay and Cerebral White Matter Hyperintensities. American Journal of Human Genetics, 2013, 93, 197-210.	2.6	43
33	Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway. Cell, 2013, 155, 57-69.	13.5	200
34	Immune profiling with a Salmonella Typhi antigen microarray identifies new diagnostic biomarkers of human typhoid. Scientific Reports, 2013, 3, 1043.	1.6	87
35	An updated systematic review of the role of host genetics in susceptibility to influenza. Influenza and Other Respiratory Viruses, 2013, 7, 37-41.	1.5	39
36	Common Polymorphisms in the PKP3-SIGIRR-TMEM16J Gene Region Are Associated With Susceptibility to Tuberculosis. Journal of Infectious Diseases, 2012, 205, 586-594.	1.9	50

#	Article	IF	CITATIONS
37	Epiregulin (EREG) variation is associated with susceptibility to tuberculosis. Genes and Immunity, 2012, 13, 275-281.	2.2	16
38	Variation in human genes encoding adhesion and proinflammatory molecules are associated with severe malaria in the Vietnamese. Genes and Immunity, 2012, 13, 503-508.	2.2	24
39	HIV-1 drug resistance in antiretroviral-naive individuals with HIV-1-associated tuberculous meningitis initiating antiretroviral therapy in Vietnam. Antiviral Therapy, 2012, 17, 905-913.	0.6	5
40	Hiv-1 Drug Resistance in Antiretroviral-Naive Individuals with HIV-1-Associated Tuberculous Meningitis Initiating Antiretroviral Therapy in Vietnam. Antiviral Therapy, 2012, 17, 905-913.	0.6	1
41	Host Genotype-Specific Therapies Can Optimize the Inflammatory Response to Mycobacterial Infections. Cell, 2012, 148, 434-446.	13.5	523
42	Human TOLLIP Regulates TLR2 and TLR4 Signaling and Its Polymorphisms Are Associated with Susceptibility to Tuberculosis. Journal of Immunology, 2012, 189, 1737-1746.	0.4	113
43	The Role of Host Genetics in Susceptibility to Influenza: AÂSystematic Review. PLoS ONE, 2012, 7, e33180.	1.1	98
44	Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1. Nature Genetics, 2011, 43, 1139-1141.	9.4	181
45	What is the evidence of a role for host genetics in susceptibility to influenza A/H5N1?. Epidemiology and Infection, 2010, 138, 1550-1558.	1.0	50
46	The sensitivity of real-time PCR amplification targeting invasive Salmonellaserovars in biological specimens. BMC Infectious Diseases, 2010, 10, 125.	1.3	94
47	Large scale screening for haemoglobin disorders in southern Vietnam: implications for avoidance and management. British Journal of Haematology, 2010, 150, 359-364.	1.2	44
48	Copy number, linkage disequilibrium and disease association in the FCGR locus. Human Molecular Genetics, 2010, 19, 3282-3294.	1.4	119
49	The Ita4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans. Cell, 2010, 140, 717-730.	13.5	501
50	Toll-Like Receptor 4 (TLR4) and Typhoid Fever in Vietnam. PLoS ONE, 2009, 4, e4800.	1.1	16
51	Genome-wide and fine-resolution association analysis of malaria in West Africa. Nature Genetics, 2009, 41, 657-665.	9.4	345
52	Glucose-6-phosphate dehydrogenase (G6PD) mutations and haemoglobinuria syndrome in the Vietnamese population. Malaria Journal, 2009, 8, 152.	0.8	39
53	Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22433-22438.	3.3	76
54	A global network for investigating the genomic epidemiology of malaria. Nature, 2008, 456, 732-737.	13.7	148

#	Article	IF	CITATIONS
55	Whole genome–amplified DNA: insights and imputation. Nature Methods, 2008, 5, 279-280.	9.0	13
56	The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis. PLoS Pathogens, 2008, 4, e1000034.	2.1	410
57	Identification of Tuberculosis Susceptibility Genes with Human Macrophage Gene Expression Profiles. PLoS Pathogens, 2008, 4, e1000229.	2.1	134
58	A Multi-Center Randomised Controlled Trial of Gatifloxacin versus Azithromycin for the Treatment of Uncomplicated Typhoid Fever in Children and Adults in Vietnam. PLoS ONE, 2008, 3, e2188.	1.1	87
59	A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. European Journal of Immunology, 2007, 37, 2280-2289.	1.6	176
60	A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes and Immunity, 2007, 8, 422-428.	2.2	176
61	A TNF region haplotype offers protection from typhoid fever in Vietnamese patients. Human Genetics, 2007, 122, 51-61.	1.8	19
62	Geographical distribution and disease associations of the CD45 exon 6 138G variant. Immunogenetics, 2006, 58, 235-239.	1.2	10
63	Polymorphisms of the gene coding for copper/zinc superoxide dismutase (SOD1) in patients with Japanese encephalitis. Annals of Tropical Medicine and Parasitology, 2006, 100, 631-636.	1.6	2
64	A Polymorphism in Tollâ€Interleukin 1 Receptor Domain Containing Adaptor Protein Is Associated with Susceptibility to Meningeal Tuberculosis. Journal of Infectious Diseases, 2006, 194, 1127-1134.	1.9	166
65	Host Susceptibility and Clinical Outcomes in Tollâ€ŀike Receptor 5–Deficient Patients with Typhoid Fever in Vietnam. Journal of Infectious Diseases, 2005, 191, 1068-1071.	1.9	61
66	The toll-like receptor 4 Asp299Gly variant: no influence on LPS responsiveness or susceptibility to pulmonary tuberculosis in The Gambia. Tuberculosis, 2004, 84, 347-352.	0.8	76
67	In vitro and in vivo stability of recombinant plasmids in a vaccine strain ofSalmonella entericavar. Typhimurium. FEMS Immunology and Medical Microbiology, 2003, 37, 111-119.	2.7	28
68	Cytokine Release by Lipopolysaccharide‣timulated Whole Blood from Patients with Typhoid Fever. Journal of Infectious Diseases, 2002, 186, 240-245.	1.9	22
69	Genes of the Class II and Class III Major Histocompatibility Complex Are Associated with Typhoid Fever in Vietnam. Journal of Infectious Diseases, 2001, 183, 261-268.	1.9	95
70	Salmonella: Immune Responses and Vaccines. Veterinary Journal, 2001, 161, 132-164.	0.6	190
71	Typhoid Fever and Genetic Polymorphisms at the Natural Resistance–Associated Macrophage Protein 1. Journal of Infectious Diseases, 2001, 183, 1156-1160.	1.9	39
72	THE IMMUNE RESPONSES TO BACTERIAL ANTIGENS ENCOUNTERED <i>IN VIVO</i> AT MUCOSAL SURFACES. , 2001, , .		0

#	Article	IF	CITATIONS
73	The immune responses to bacterial antigens encountered in vivo at mucosal surfaces. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 705-712.	1.8	5
74	Use of In Vivo-Regulated Promoters To Deliver Antigens from Attenuated Salmonella enterica var. Typhimurium. Infection and Immunity, 1999, 67, 5133-5141.	1.0	52
75	Vaccine Potential of Attenuated Mutants of Corynebacterium pseudotuberculosis in Sheep. Infection and Immunity, 1998, 66, 474-479.	1.0	40
76	Comparison of the Abilities of Different Attenuated <i>Salmonella typhimurium</i> Strains To Elicit Humoral Immune Responses against a Heterologous Antigen. Infection and Immunity, 1998, 66, 732-740.	1.0	73
77	DNA vaccines for bacterial infections. Immunology and Cell Biology, 1997, 75, 364-369.	1.0	39
78	Cytokine Gene Knockout Mice—Lessons forMucosal B-Cell Development. , 1996, , 247-261.		3
79	Studies of immunity and bacterial invasiveness in mice given a recombinant salmonella vector encoding murine interleukin-6. Infection and Immunity, 1996, 64, 2730-2736.	1.0	30
80	Molecular characterization of the staphylococcal multidrug resistance export protein QacC. Journal of Bacteriology, 1995, 177, 2827-2833.	1.0	124
81	Salmonella typhimurium displays normal invasion of mice with defective epidermal growth factor receptors. Infection and Immunity, 1995, 63, 2770-2772.	1.0	14
82	Studies of the pathogenesis and immunology of attenuated mutants of Salmonella enterica var. Typhimurium: lessons for human typhoid fever?. Medical Journal of Indonesia, 0, 7, 74.	0.2	0
83	Development of recombinant S-typhimurium as a model for S. typhi -based vaccine vectors. Medical Journal of Indonesia, 0, 7, 187.	0.2	Ο