
Andreas Krueger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
2	Dynamic Visualization of Thrombopoiesis Within Bone Marrow. Science, 2007, 317, 1767-1770.	12.6	572
3	FLICE-Inhibitory Proteins: Regulators of Death Receptor-Mediated Apoptosis. Molecular and Cellular Biology, 2001, 21, 8247-8254.	2.3	508
4	Cellular FLICE-inhibitory Protein Splice Variants Inhibit Different Steps of Caspase-8 Activation at the CD95 Death-inducing Signaling Complex. Journal of Biological Chemistry, 2001, 276, 20633-20640.	3.4	487
5	Development of Interleukin-17-Producing γδT Cells Is Restricted to a Functional Embryonic Wave. Immunity, 2012, 37, 48-59.	14.3	309
6	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198
7	The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunological Reviews, 2003, 193, 58-69.	6.0	178
8	Enhanced caspase-8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs. Cell Death and Differentiation, 2004, 11, S86-S96.	11.2	178
9	CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood, 2010, 115, 1906-1912.	1.4	130
10	TCR-Mediated Up-Regulation of c-FLIPshort Correlates with Resistance Toward CD95-Mediated Apoptosis by Blocking Death-Inducing Signaling Complex Activity. Journal of Immunology, 2000, 165, 6293-6300.	0.8	124
11	c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood, 2006, 108, 2669-2677.	1.4	105
12	Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology, 2004, 39, 645-654.	7.3	104
13	Genetic models reveal origin, persistence and non-redundant functions of IL-17–producing γδ⊤ cells. Journal of Experimental Medicine, 2018, 215, 3006-3018.	8.5	103
14	Differential synergy of Notch and T cell receptor signaling determines αβ versus γδlineage fate. Journal of Experimental Medicine, 2006, 203, 1579-1590.	8.5	101
15	T cell receptor–instructed αβ versus γδlineage commitment revealed by single-cell analysis. Journal of Experimental Medicine, 2008, 205, 1173-1186.	8.5	97
16	Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7407-7412.	7.1	90
17	Regulation of T cell Apoptosis during the Immune Response. Current Molecular Medicine, 2002, 2, 257-272.	1.3	88
18	Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood, 2011, 117, 4338-4348.	1.4	85

#	Article	IF	CITATIONS
19	HTLV-1 Tax protects against CD95-mediated apoptosis by induction of the cellular FLICE-inhibitory protein (c-FLIP). Blood, 2006, 107, 3933-3939.	1.4	79
20	Glucocorticoids inhibit activation-induced cell death (AICD) via direct DNA-dependent repression of the CD95 ligand gene by a glucocorticoid receptor dimer. Blood, 2005, 106, 617-625.	1.4	78
21	Identification of a T Lineage-Committed Progenitor in Adult Blood. Immunity, 2007, 26, 105-116.	14.3	77
22	The active caspase-8 heterotetramer is formed at the CD95 DISC. Cell Death and Differentiation, 2003, 10, 144-145.	11.2	74
23	Resistance of Short Term Activated T Cells to CD95-Mediated Apoptosis Correlates with De Novo Protein Synthesis of c-FLIPshort. Journal of Immunology, 2004, 172, 2194-2200.	0.8	73
24	Suramin inhibits death receptor–induced apoptosis in vitro and fulminant apoptotic liver damage in mice. Nature Medicine, 2004, 10, 602-609.	30.7	71
25	Viral IFN-Regulatory Factors Inhibit Activation-Induced Cell Death Via Two Positive Regulatory IFN-Regulatory Factor 1-Dependent Domains in the CD95 Ligand Promoter. Journal of Immunology, 2002, 168, 1226-1234.	0.8	65
26	Glutathione Dependence of Caspase-8 Activation at the Death-inducing Signaling Complex. Journal of Biological Chemistry, 2002, 277, 5588-5595.	3.4	61
27	An IL-2-Dependent Switch Between CD95 Signaling Pathways Sensitizes Primary Human T Cells Toward CD95-Mediated Activation-Induced Cell Death. Journal of Immunology, 2003, 171, 2930-2936.	0.8	61
28	Phenotypic plasticity of T cell progenitors upon exposure to Notch ligands. Journal of Experimental Medicine, 2006, 203, 1977-1984.	8.5	57
29	T Cell Development by the Numbers. Trends in Immunology, 2017, 38, 128-139.	6.8	54
30	FasL (CD95L/APO-1L) Resistance of Neurons Mediated by Phosphatidylinositol 3-Kinase-Akt/Protein Kinase B-Dependent Expression of Lifeguard/Neuronal Membrane Protein 35. Journal of Neuroscience, 2005, 25, 6765-6774.	3.6	53
31	Discontinued Postnatal Thymocyte Development in Sphingosine 1-Phosphate-Lyase-Deficient Mice. Journal of Immunology, 2009, 183, 4292-4301.	0.8	53
32	Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure. Nature Communications, 2014, 5, 4821.	12.8	53
33	Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in $\hat{I}\pm\hat{I}^2$ and $\hat{I}^3\hat{I}$ T Cells. PLoS ONE, 2011, 6, e20171.	2.5	53
34	Multiple extrathymic precursors contribute to T-cell development with different kinetics. Blood, 2010, 115, 1137-1144.	1.4	44
35	An unexpected role for FosB in activation-induced cell death of T cells. Oncogene, 2003, 22, 1333-1339.	5.9	43
36	HDAC inhibitors trigger apoptosis in HPV-positive cells by inducing the E2F–p73 pathway. Oncogene, 2004, 23, 4807-4817.	5.9	43

3

#	Article	IF	CITATIONS
37	The role of CAP3 in CD95 signaling: new insights into the mechanism of procaspase-8 activation. Cell Death and Differentiation, 2006, 13, 489-498.	11.2	33
38	Micro <scp>RNA</scp> miRâ€181a/bâ€1 controls <scp>MAIT</scp> cell development. Immunology and Cell Biology, 2019, 97, 190-202.	2.3	33
39	Vascular miR-181b controls tissue factor-dependent thrombogenicity and inflammation in type 2 diabetes. Cardiovascular Diabetology, 2020, 19, 20.	6.8	33
40	MicroRNA-181a/b-1 Is Not Required for Innate γδNKT Effector Cell Development. PLoS ONE, 2015, 10, e0145010.	2.5	30
41	miR-181a/b-1 controls thymic selection of Treg cells and tunes their suppressive capacity. PLoS Biology, 2019, 17, e2006716.	5.6	28
42	Alternative Splicing of Caspase-8 mRNA during Differentiation of Human Leukocytes. Biochemical and Biophysical Research Communications, 2001, 289, 777-781.	2.1	26
43	Hypertrophy of infected Peyer's patches arises from global, interferon-receptor, and CD69-independent shutdown of lymphocyte egress. Mucosal Immunology, 2014, 7, 892-904.	6.0	26
44	Chemokine receptor CX3CR1 promotes dendritic cell development under steadyâ€state conditions. European Journal of Immunology, 2011, 41, 1256-1265.	2.9	24
45	Responsiveness of Developing T Cells to IL-7 Signals Is Sustained by miR-17â^1⁄492. Journal of Immunology, 2015, 195, 4832-4840.	0.8	24
46	Multicongenic fate mapping quantification of dynamics of thymus colonization. Journal of Experimental Medicine, 2015, 212, 1589-1601.	8.5	24
47	Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b. PLoS ONE, 2018, 13, e0192230.	2.5	23
48	Overexpression of Vα14Jα18 TCR promotes development of iNKT cells in the absence of miRâ€181a/bâ€1. Immunology and Cell Biology, 2016, 94, 741-746.	2.3	20
49	ICOSâ€dependent stimulation of NKT cells by marginal zone B cells. European Journal of Immunology, 2011, 41, 3125-3134.	2.9	19
50	Modeling the Dynamics of T-Cell Development in the Thymus. Entropy, 2021, 23, 437.	2.2	19
51	MicroRNA in T-Cell Development and T-Cell Mediated Acute Graft-Versus-Host Disease. Frontiers in Immunology, 2018, 9, 992.	4.8	16
52	Chimeric antigen receptor–induced BCL11B suppression propagates NK-like cell development. Journal of Clinical Investigation, 2019, 129, 5108-5122.	8.2	16
53	miR-181a Expression in Donor T Cells Modulates Graft-versus-Host Disease after Allogeneic Bone Marrow Transplantation. Journal of Immunology, 2016, 196, 3927-3934.	0.8	15
54	MicroRNA miR-181—A Rheostat for TCR Signaling in Thymic Selection and Peripheral T-Cell Function. International Journal of Molecular Sciences, 2020, 21, 6200.	4.1	15

#	Article	IF	CITATIONS
55	MicroRNA-181a regulates IFN-γ expression in effector CD8+ T cell differentiation. Journal of Molecular Medicine, 2020, 98, 309-320.	3.9	15
56	miRâ€191 modulates Bâ€cell development and targets transcription factors E2A, Foxp1, and Egr1. European Journal of Immunology, 2019, 49, 121-132.	2.9	14
57	In vitro generated human memory-like T cells are CD95 type II cells and resistant towards CD95-mediated apoptosis. European Journal of Immunology, 2006, 36, 2894-2903.	2.9	13
58	Limited niche availability suppresses murine intrathymic dendritic-cell development from noncommitted progenitors. Blood, 2015, 125, 457-464.	1.4	13
59	Thymus Colonization: Who, How, How Many?. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 81-88.	2.3	13
60	Immunoglobulins drive terminal maturation of splenic dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2282-2287.	7.1	12
61	Development of Unconventional T Cells Controlled by MicroRNA. Frontiers in Immunology, 2019, 10, 2520.	4.8	11
62	The Role of MicroRNAs in Development and Function of Regulatory T Cells – Lessons for a Better Understanding of MicroRNA Biology. Frontiers in Immunology, 2020, 11, 2185.	4.8	11
63	Germ Line Deletion Reveals a Nonessential Role of Atypical Mitogen-Activated Protein Kinase 6/Extracellular Signal-Regulated Kinase 3. Molecular and Cellular Biology, 2019, 39, .	2.3	9
64	miRNA miR-21 Is Largely Dispensable for Intrathymic T-Cell Development. Frontiers in Immunology, 2018, 9, 2497.	4.8	8
65	A missing link in thymic dendritic cell development. European Journal of Immunology, 2011, 41, 2145-2147.	2.9	7
66	Bâ€cell modulation of dendriticâ€cell function: Signals from the far side. European Journal of Immunology, 2014, 44, 23-32.	2.9	7
67	S/T Phosphorylation of DLL1 Is Required for Full Ligand Activity <i>In Vitro</i> but Dispensable for DLL1 Function <i>In Vivo</i> during Embryonic Patterning and Marginal Zone B Cell Development. Molecular and Cellular Biology, 2014, 34, 1221-1233.	2.3	7
68	LAMTOR2 (p14) Controls B Cell Differentiation by Orchestrating Endosomal BCR Trafficking. Frontiers in Immunology, 2019, 10, 497.	4.8	7
69	The transcription factor TAL1 and miR-17-92 create a regulatory loop in hematopoiesis. Scientific Reports, 2020, 10, 21438.	3.3	7
70	Enhanced differentiation of functional human T cells in NSGW41 mice with tissue-specific expression of human interleukin-7. Leukemia, 2021, 35, 3561-3567.	7.2	7
71	Specificity of anti-human CD95 (APO-1/Fas) antibodies. Biochemical and Biophysical Research Communications, 2002, 297, 459-462.	2.1	6
72	Extra-Thymic Physiological T Lineage Progenitor Activity Is Exclusively Confined to Cells Expressing either CD127, CD90, or High Levels of CD117. PLoS ONE, 2012, 7, e30864.	2.5	3

#	Article	IF	CITATIONS
73	Post-transcriptional control of T-cell development in the thymus. Immunology Letters, 2022, 247, 1-12.	2.5	3
74	Establishing a murine xenograft-model for long-term analysis of factors inducing chromosomal instability in myelodysplastic syndrome: Pitfalls and successes. Cancer Genetics, 2016, 209, 258-266.	0.4	2
75	Timely Controlled T Cell Receptor Expression of Genetically Engineered Precursor T Cells Requires Early Transgene Induction for Leukemia Control after Hematopoietic Stem Cell Transplantation. Blood, 2014, 124, 657-657.	1.4	0
76	Complete Block of Early B Cell Differentiation in Mice Lacking the Endosomal Adaptor Protein p14. Blood, 2015, 126, 1026-1026.	1.4	0
77	Dynamic Telomere Shortening and Chromosomal Instability in Irradiated CD34+ Cells Transduced with TP53 Hotspot Mutations R175H, R248W and R249S. Blood, 2015, 126, 4832-4832.	1.4	0
78	Regulation of Transcription Factors Foxp1, E2A and Egr-1 By microRNA-191 Constrains B Lymphocyte Development and Suppresses Development of Diffuse Large B Cell Lymphoma. Blood, 2015, 126, 287-287.	1.4	0
79	No Observation of Chromosomal Instability after Transplantation of RPS14- and TP53-Modified Human HSCs in NSG/NSGS Mice. Blood, 2015, 126, 4797-4797.	1.4	0
80	Magnetic Bead-Based Enrichment of Murine MAIT Cells. Methods in Molecular Biology, 2020, 2098, 299-305.	0.9	0