Di Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376441/publications.pdf

Version: 2024-02-01

434 papers 34,272 citations

99 h-index 161 g-index

449 all docs 449
docs citations

449 times ranked 31808 citing authors

#	Article	IF	CITATIONS
1	Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. Advanced Science, 2022, 9, e2103257.	5.6	69
2	<scp>Highâ€performance</scp> optical noncontact controlling system based on broadband <scp>PtTe_{<i>x</i><fscp>/sib></fscp>}</scp> /Si heterojunction photodetectors for <scp>human–machine</scp> interaction. InformaÄnÃ-Materiály, 2022, 4, .	8.5	13
3	MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Research, 2022, 15, 3653-3659.	5.8	51
4	Continuous Fabrication of Ti3C2Tx MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors with Improved Performance. Nano-Micro Letters, 2022, 14, 34.	14.4	46
5	Nanostructured perovskites for nonvolatile memory devices. Chemical Society Reviews, 2022, 51, 3341-3379.	18.7	71
6	Ti ₃ C ₂ T <i>_x</i> MXeneâ€RAN van der Waals Heterostructureâ€Based Flexible Transparent NIR Photodetector Array for 1024 Pixel Image Sensing Application. Advanced Materials Technologies, 2022, 7, .	3.0	17
7	Allâ€Flexible Artificial Reflex Arc Based on Thresholdâ€Switching Memristor. Advanced Functional Materials, 2022, 32, .	7.8	30
8	A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter, 2022, 5, 1481-1501.	5.0	104
9	Monolayer WS ₂ Lateral Homosuperlattices with Two-dimensional Periodic Localized Photoluminescence. ACS Nano, 2022, 16, 597-603.	7.3	7
10	Near-Infrared Polarimetric Image Sensors Based on Ordered Sulfur-Passivation GaSb Nanowire Arrays. ACS Nano, 2022, 16, 8128-8140.	7.3	22
11	Airâ€Stabilized Leadâ€Free Hexagonal Cs ₃ Bi ₂ I ₉ Nanocrystals for Ultrahighâ€Performance Optical Detection. Advanced Functional Materials, 2022, 32, .	7.8	15
12	Biocompatible liquid metal coated stretchable electrospinning film for strain sensors monitoring system. Science China Materials, 2022, 65, 2235-2243.	3.5	14
13	Robust Leadâ€Free Perovskite Nanowire Arrayâ€Based Artificial Synapses Exemplifying Gestalt Principle of Closure via a Letter Recognition Scheme. Advanced Intelligent Systems, 2022, 4, .	3.3	5
14	A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Research, 2022, 15, 9341-9351.	5.8	26
15	Flexible Artificial Optoelectronic Synapse based on Leadâ€Free Metal Halide Nanocrystals for Neuromorphic Computing and Color Recognition. Advanced Science, 2022, 9, .	5.6	56
16	Direct Polarimetric Image Sensor and Wide Spectral Response Based on Quasiâ€1D Sb _{S_{S₃ Nanowire. Advanced Functional Materials, 2021, 31, 2006601.}}	7.8	52
17	NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Science China Materials, 2021, 64, 581-591.	3.5	64
18	A Survey of Non-Volatile Main Memory Technologies: State-of-the-Arts, Practices, and Future Directions. Journal of Computer Science and Technology, 2021, 36, 4-32.	0.9	17

#	Article	IF	CITATIONS
19	Controlled Assembly of MXene Nanosheets as an Electrode and Active Layer for Highâ€Performance Electronic Skin. Advanced Functional Materials, 2021, 31, 2010533.	7.8	143
20	Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Research, 2021, 14, 2810-2818.	5.8	9
21	Flexible Sensors Based on Organic–Inorganic Hybrid Materials. Advanced Materials Technologies, 2021, 6, 2000889.	3.0	43
22	Recent Advances in Perovskite Photodetectors for Image Sensing. Small, 2021, 17, e2005606.	5.2	111
23	Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance. Nano Research, 2021, 14, 3379-3385.	5.8	8
24	Flexible Image Sensors with Semiconducting Nanowires for Biomimic Visual Applications. Small Structures, 2021, 2, 2000152.	6.9	29
25	Ultra-High-Sensitivity photodetector from ultraviolet to visible based on Ga-doped In2O3 nanowire phototransistor with top-gate structure. , 2021, , .		0
26	Flexible Selfâ€Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@MXene Thinâ€Films. Advanced Materials, 2021, 33, e2007890.	11.1	127
27	In-Situ Annealed Ti3C2Tx MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability. Nano-Micro Letters, 2021, 13, 100.	14.4	56
28	Highly Sensitive and Flexible Piezoresistive Pressure Sensors Based on 3D Reduced Graphene Oxide Aerogel. IEEE Electron Device Letters, 2021, 42, 589-592.	2.2	36
29	Short-Wave Near-Infrared Polarization Sensitive Photodetector Based on GaSb Nanowire. IEEE Electron Device Letters, 2021, 42, 549-552.	2.2	31
30	Lowâ€Noise Dualâ€Band Polarimetric Image Sensor Based on 1D Bi ₂ S ₃ Nanowire. Advanced Science, 2021, 8, e2100075.	5.6	48
31	An Ultrasensitive Contact Lens Sensor Based On Selfâ€Assembly Graphene For Continuous Intraocular Pressure Monitoring. Advanced Functional Materials, 2021, 31, 2010991.	7.8	31
32	Biocompatible MXene/Chitosan-Based Flexible Bimodal Devices for Real-Time Pulse and Respiratory Rate Monitoring., 2021, 3, 921-929.		36
33	Artificial Optoelectronic Synapses Based on TiN <i>_x</i> O _{2–} <i>_x</i> Neuromorphic Computing and Visual System. Advanced Functional Materials, 2021, 31, 2101201.	7.8	92
34	Wearable, Implantable, and Interventional Medical Devices Based on Smart Electronic Skins. Advanced Materials Technologies, 2021, 6, 2100107.	3.0	81
35	Recent advanced applications of ion-gel in ionic-gated transistor. Npj Flexible Electronics, 2021, 5, .	5.1	54
36	Flexible Transparent <scp>Nearâ€Infrared</scp> Photodetector Based on <scp>2D Ti₃C₂ MXeneâ€Te</scp> Van Der Waals Heterostructures ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2141-2146.	2.6	18

#	Article	IF	Citations
37	Directly transfer-printing tailored micro-supercapacitors. Materials Today Communications, 2021, 27, 102342.	0.9	4
38	Nearâ€Infrared Light Triggered Selfâ€Powered Mechanoâ€Optical Communication System using Wearable Photodetector Textile. Advanced Functional Materials, 2021, 31, 2104782.	7.8	74
39	Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy, 2021, 84, 105921.	8.2	104
40	Microâ€Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review. Small, 2021, 17, e2100804.	5.2	82
41	Oxidized Ti ₃ C ₂ T _x film-based high-performance flexible pressure sensors. Journal Physics D: Applied Physics, 2021, 54, 384002.	1.3	3
42	Recent Advances in Carbon Materialâ€Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Advanced Functional Materials, 2021, 31, 2104288.	7.8	116
43	Chitosan-Assisted Fabrication of a Network C@V ₂ O ₅ Cathode for High-Performance Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 37194-37200.	4.0	35
44	Ti ₃ C ₂ T <i>>_x</i> >MXene Conductive Layers Supported Bioâ€Derived Fe <i>>_x</i> /MXene/Carbonaceous Nanoribbons for Highâ€Performance Half/Full Sodiumâ€Ion and Potassiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2101535.	11.1	128
45	An artificial olfactory system with sensing, memory and self-protection capabilities. Nano Energy, 2021, 86, 106078.	8.2	45
46	Nitrogen Dioxide Gas Sensor Based on Ag-Doped Graphene: A First-Principle Study. Chemosensors, 2021, 9, 227.	1.8	15
47	Low-Dimensional Nanostructure Based Flexible Photodetectors: Device Configuration, Functional Design, Integration, and Applications. Accounts of Materials Research, 2021, 2, 954-965.	5.9	14
48	Three-dimensional perovskite nanowire array–based ultrafast resistive RAM with ultralong data retention. Science Advances, 2021, 7, eabg3788.	4.7	29
49	Dual-Polarization SAR Ship Target Recognition Based on Mini Hourglass Region Extraction and Dual-Channel Efficient Fusion Network. IEEE Access, 2021, 9, 29078-29089.	2.6	22
50	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	7.8	322
51	Polarizer-free polarimetric image sensor through anisotropic two-dimensional GeSe. Science China Materials, 2021, 64, 1230-1237.	3.5	21
52	A perspective on flexible sensors in developing diagnostic devices. Applied Physics Letters, 2021, 119, .	1.5	23
53	Progress and Perspectives in Designing Flexible Microsupercapacitors. Micromachines, 2021, 12, 1305.	1.4	12
54	Recent advances of flexible sensors for biomedical applications. Progress in Natural Science: Materials International, 2021, 31, 872-882.	1.8	42

#	Article	IF	CITATIONS
55	Integrated polarization-sensitive amplification system for digital information transmission. Nature Communications, 2021, 12, 6476.	5.8	53
56	Assessment of Occlusal Force and Local Gas Release Using Degradable Bacterial Cellulose/Ti ₃ C ₂ T _{<i>x</i>} MXene Bioaerogel for Oral Healthcare. ACS Nano, 2021, 15, 18385-18393.	7. 3	65
57	Recent Advances in Fiber Supercapacitors: Materials, Device Configurations, and Applications. Advanced Materials, 2020, 32, e1901806.	11.1	225
58	Recent progress and future prospects of sodium-ion capacitors. Science China Materials, 2020, 63, 185-206.	3.5	40
59	Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-visible-near infrared photodetectors. Science China Materials, 2020, 63, 383-391.	3.5	9
60	Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering Reports, 2020, 140, 100523.	14.8	215
61	Recent advances in lowâ€dimensional semiconductor nanomaterials and their applications in highâ€performance photodetectors. InformaÄnÃ-Materiály, 2020, 2, 291-317.	8.5	103
62	Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2â"x. Nature Catalysis, 2020, 3, 116-124.	16.1	40
63	Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy, 2020, 78, 105252.	8.2	153
64	All-Ti3C2TxMXene Based Flexible On-chip Microsupercapacitor Array. Chemical Research in Chinese Universities, 2020, 36, 694-698.	1.3	16
65	An integrated flexible multifunctional sensing system for simultaneous monitoring of environment signals. Science China Materials, 2020, 63, 2560-2569.	3.5	14
66	Flexible Short-Wave Infrared Image Sensors Enabled by High-Performance Polymeric Photodetectors. Macromolecules, 2020, 53, 10636-10643.	2.2	42
67	A Flexible Concentric Circle Structured Zincâ€lon Microâ€Battery with Electrodeposited Electrodes. Small Methods, 2020, 4, 2000363.	4.6	42
68	Preface to the Special Issue on Flexible Materials and Structures for Bioengineering, Sensing, and Energy Applications. Journal of Semiconductors, 2020, 41, 040101.	2.0	2
69	2D Nanomaterials with Hierarchical Architecture for Flexible Sensor Application. ACS Symposium Series, 2020, , 93-116.	0.5	5
70	Nanosensor-Based Flexible Electronic Assisted with Light Fidelity Communicating Technology for Volatolomics-Based Telemedicine. ACS Nano, 2020, 14, 15517-15532.	7.3	19
71	In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement. Advanced Electronic Materials, 2020, 6, 2000269.	2.6	23
72	An Electrically Modulated Singleâ€Color/Dualâ€Color Imaging Photodetector. Advanced Materials, 2020, 32, e1907257.	11.1	145

#	Article	IF	Citations
73	A Self-Healable Bifunctional Electronic Skin. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24339-24347.	4.0	58
74	Ag-Modified 3D Reduced Graphene Oxide Aerogel-Based Sensor with an Embedded Microheater for a Fast Response and High-Sensitive Detection of NO ₂ . ACS Applied Materials & Detection of NO ₂ . ACS Applied Materials & Detection of NO _{2020, 12, 25243-25252.}	4.0	56
75	Growth of aligned SnS nanowire arrays for near infrared photodetectors. Journal of Semiconductors, 2020, 41, 042602.	2.0	9
76	Nanofiber/nanowires-based flexible and stretchable sensors. Journal of Semiconductors, 2020, 41, 041605.	2.0	64
77	3D Dielectric Layer Enabled Highly Sensitive Capacitive Pressure Sensors for Wearable Electronics. ACS Applied Materials & Electronics, 2020, 12, 32023-32030.	4.0	85
78	Nb2O5 nanotubes on carbon cloth for high performance sodium-ion capacitors. Science China Materials, 2020, 63, 1171-1181.	3.5	13
79	Hydroxylation and Cation Segregation in (La _{0.5} Sr _{0.5})FeO _{3â^Î} Electrodes. Chemistry of Materials, 2020, 32, 2926-2934.	3.2	12
80	Threshold switching synaptic device with tactile memory function. Nano Energy, 2020, 76, 105109.	8.2	22
81	Bimetal Schottky Heterojunction Boosting Energyâ€Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000556.	7.8	216
82	An Integrated Flexible Allâ€Nanowire Infrared Sensing System with Record Photosensitivity. Advanced Materials, 2020, 32, e1908419.	11.1	56
83	Polarizationâ€Sensitive Photodetectors: Symmetryâ€Reduction Enhanced Polarizationâ€Sensitive Photodetection in Core–Shell Sbl ₃ /Sb ₂ O ₃ van der Waals Heterostructure (Small 7/2020). Small, 2020, 16, 2070036.	5.2	1
84	Single layers of MoS2/Graphene nanosheets embedded in activated carbon nanofibers for high-performance supercapacitor. Journal of Alloys and Compounds, 2020, 829, 154557.	2.8	47
85	Recent Advances of Twoâ€Dimensional Nanomaterials for Electrochemical Capacitors. ChemSusChem, 2020, 13, 1093-1113.	3.6	40
86	Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nature Nanotechnology, 2020, 15, 231-237.	15.6	65
87	Symmetryâ€Reduction Enhanced Polarizationâ€Sensitive Photodetection in Core–Shell Sbl ₃ /Sb ₂ O ₃ van der Waals Heterostructure. Small, 2020, 16, e1907172.	5.2	32
88	Miss Penalty Aware Cache Replacement for Hybrid Memory Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4669-4682.	1.9	7
89	Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Storage Materials, 2020, 27, 169-186.	9.5	64
90	Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. Nano Energy, 2020, 73, 104764.	8.2	58

#	Article	IF	Citations
91	Wearable supercapacitor self-charged by P(VDF-TrFE) piezoelectric separator. Progress in Natural Science: Materials International, 2020, 30, 174-179.	1.8	47
92	Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. Journal of Materials Chemistry C, 2020, 8, 6388-6395.	2.7	24
93	Infrared Imaging Sensors: An Integrated Flexible Allâ€Nanowire Infrared Sensing System with Record Photosensitivity (Adv. Mater. 16/2020). Advanced Materials, 2020, 32, 2070126.	11.1	0
94	Biocompatible and Biodegradable Functional Polysaccharides for Flexible Humidity Sensors. Research, 2020, 2020, 8716847.	2.8	46
95	Bioâ€Multifunctional Smart Wearable Sensors for Medical Devices. Advanced Intelligent Systems, 2019, 1, 1900040.	3.3	115
96	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	13.3	144
97	Flexible Smart Noncontact Control Systems with Ultrasensitive Humidity Sensors. Small, 2019, 15, e1902801.	5. 2	110
98	Mixedâ€Valenceâ€Driven Quasiâ€1D Sn ^{II} Sn ^{IV} S ₃ with Highly Polarizationâ€Sensitive UV–vis–NIR Photoresponse. Advanced Functional Materials, 2019, 29, 1904416.	7.8	39
99	Water-proof and thermally inert flexible pressure sensors based on zero temperature coefficient of resistance hybrid films. Journal of Materials Chemistry C, 2019, 7, 9648-9654.	2.7	20
100	Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors. ACS Nano, 2019, 13, 9139-9147.	7.3	308
101	Metalâ€Organicâ€Frameworkâ€Derived MCo ₂ O ₄ (M=Mn and Zn) Nanosheet Arrays on Carbon Cloth as Integrated Anodes for Energy Storage Applications. ChemElectroChem, 2019, 6, 5836-5843.	1.7	26
102	Alâ€Dopingâ€Induced VO ₂ (B) Phase in VO ₂ (M) Toward Smart Optical Thin Films with Modulated Δ <i>T</i> _{vis} and Δ <i>T</i> _c . Advanced Engineering Materials, 2019, 21, 1900947.	1.6	19
103	Motion recognition by a liquid filled tubular triboelectric nanogenerator. Nanoscale, 2019, 11, 495-503.	2.8	19
104	Gas Sensors: Grainâ∈Boundaryâ∈Induced Drastic Sensing Performance Enhancement of Polycrystallineâ∈Microwire Printed Gas Sensors (Adv. Mater. 4/2019). Advanced Materials, 2019, 31, 1970028.	11.1	6
105	Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy, 2019, 58, 624-632.	8.2	143
106	Electrospraying preparation of metal germanate nanospheres for high-performance lithium-ion batteries and room-temperature gas sensors. Nanoscale, 2019, 11, 12116-12123.	2.8	15
107	Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors. Science China Materials, 2019, 62, 1139-1150.	3.5	22
108	Highly flexible self-powered photodetectors based on core–shell Sb/CdS nanowires. Journal of Materials Chemistry C, 2019, 7, 4581-4586.	2.7	20

#	Article	IF	Citations
109	MoS ₂ –OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS ₂ on Arbitrary Substrates. Journal of the American Chemical Society, 2019, 141, 5392-5401.	6.6	87
110	A new <i>Cathaysiorthis</i> (Brachiopoda) fauna from the lower Llandovery of eastern Qinling, China. Papers in Palaeontology, 2019, 5, 537-557.	0.7	3
111	Characterization of atomic defects on the photoluminescence in twoâ€dimensional materials using transmission electron microscope. InformaÄnÃ-Materiály, 2019, 1, 85-97.	8.5	46
112	Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today, 2019, 26, 176-198.	6.2	60
113	Resonant and Selective Excitation of Photocatalytically Active Defect Sites in TiO ₂ . ACS Applied Materials & Defect Sites in TiO ₂ . ACS	4.0	1
114	Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn2Se4. Applied Physics Letters, 2019, 115, .	1.5	8
115	Skin Adhesives with Controlled Adhesion by Polymer Chain Mobility. ACS Applied Materials & Discrete Section 11, 1496-1502.	4.0	48
116	Grainâ∈Boundaryâ∈Induced Drastic Sensing Performance Enhancement of Polycrystallineâ∈Microwire Printed Gas Sensors. Advanced Materials, 2019, 31, e1804583.	11.1	110
117	Electronic structure and exciton shifts in Sb-doped MoS2 monolayer. Npj 2D Materials and Applications, 2019, 3, .	3.9	82
118	Chemical expansion of praseodymium-cerium oxide films at high temperatures by laser doppler vibrometry. Solid State Ionics, 2018, 319, 61-67.	1.3	9
119	Largeâ€Scale Fabrication of Flexible Onâ€Chip Microâ€Supercapacitors by a Mechanical Scribing Process. ChemElectroChem, 2018, 5, 1652-1657.	1.7	9
120	Printable Zn ₂ GeO ₄ Microwires Based Flexible Photodetectors with Tunable Photoresponses. Advanced Materials Technologies, 2018, 3, 1800050.	3.0	14
121	Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Science China Materials, 2018, 61, 254-262.	3.5	37
122	Recent Developments in Grapheneâ∈Based Tactile Sensors and Eâ∈Skins. Advanced Materials Technologies, 2018, 3, 1700248.	3.0	153
123	Tellurophene-Based Random Copolymers for High Responsivity and Detectivity Photodetectors. ACS Applied Materials & Detectivity Photodetectors. ACS Applied Pho	4.0	23
124	An Artificial Flexible Visual Memory System Based on an UVâ€Motivated Memristor. Advanced Materials, 2018, 30, 1705400.	11.1	299
125	Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Science China Materials, 2018, 61, 1587-1595.	3.5	122
126	Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Research, 2018, 11, 511-519.	5.8	75

#	Article	IF	Citations
127	Fabrication of rigid and flexible SrGe4O9 nanotube-based sensors for room-temperature ammonia detection. Nano Research, 2018, 11, 431-439.	5.8	23
128	Recent progress and perspectives of metal oxides based on-chip microsupercapacitors. Chinese Chemical Letters, 2018, 29, 553-563.	4.8	12
129	Flexible Broadband Image Sensors with SnS Quantum Dots/Zn ₂ SnO ₄ Nanowires Hybrid Nanostructures. Advanced Functional Materials, 2018, 28, 1705389.	7.8	68
130	Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small, 2018, 14, e1702829.	5.2	208
131	Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations. Nano Research, 2018, 11, 1029-1037.	5.8	44
132	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	3.0	128
133	Stretchable and Compressible Supercapacitor with Polyaniline on Hydrogel Electrolyte. Journal of the Electrochemical Society, 2018, 165, A3792-A3798.	1.3	17
134	Plantâ€Based Modular Building Blocks for "Green―Electronic Skins. Advanced Functional Materials, 2018, 28, 1804510.	7.8	97
135	Device Configurations and Future Prospects of Flexible/Stretchable Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1805596.	7.8	132
136	Thin-film nano-thermogravimetry applied to praseodymium-cerium oxide films at high temperatures. Applied Physics Letters, 2018, 112, .	1.5	10
137	Longitudinal twinning \hat{l} ±-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity. Frontiers of Optoelectronics, 2018, 11, 245-255.	1.9	10
138	Hollow Polypyrrole Sleeve Based Coaxial Fiber Supercapacitors for Wearable Integrated Photosensing System. Advanced Materials Technologies, 2018, 3, 1800115.	3.0	27
139	MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Research, 2018, 11, 5866-5878.	5.8	55
140	Highly Stretchable Microâ€Supercapacitor Arrays with Hybrid MWCNT/PANI Electrodes. Advanced Materials Technologies, 2017, 2, 1600282.	3.0	144
141	Au-nanoparticles-decorated Sb ₂ S ₃ nanowire-based flexible ultraviolet/visible photodetectors. Journal of Materials Chemistry C, 2017, 5, 3330-3335.	2.7	45
142	Microâ€Supercapacitors: Highly Stretchable Microâ€Supercapacitor Arrays with Hybrid MWCNT/PANI Electrodes (Adv. Mater. Technol. 3/2017). Advanced Materials Technologies, 2017, 2, .	3.0	0
143	Defect Chemistry of Pr Doped Ceria Thin Films Investigated by <i>in Situ</i> i> Optical and Impedance Measurements. Chemistry of Materials, 2017, 29, 1999-2007.	3.2	27
144	Role of grain size on redox induced compositional stresses in Pr doped ceria thin films. Physical Chemistry Chemical Physics, 2017, 19, 12206-12220.	1.3	6

#	Article	IF	Citations
145	Facile Growth of Caterpillar-like NiCo ₂ S ₄ Nanocrystal Arrays on Nickle Foam for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18774-18781.	4.0	165
146	Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38, 28-35.	8.2	194
147	Dynamic chemical expansion of thin-film non-stoichiometric oxides at extreme temperatures. Nature Materials, 2017, 16, 749-754.	13.3	46
148	Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sensors and Actuators B: Chemical, 2017, 252, 79-85.	4.0	89
149	All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy, 2017, 35, 121-127.	8.2	132
150	ZnO Quantum Dot Decorated Zn ₂ SnO ₄ Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors. ACS Nano, 2017, 11, 4067-4076.	7.3	190
151	Molecular Tilting Alignment on Ag@C Nanocubes Monitored by Temperature-Dependent Surface Enhanced Raman Scattering. Scientific Reports, 2017, 7, 12865.	1.6	8
152	Recent Progress of Selfâ€Powered Sensing Systems for Wearable Electronics. Small, 2017, 13, 1701791.	5.2	223
153	Highly Sensitive Lowâ€Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Nearâ€Infrared Region. Advanced Functional Materials, 2017, 27, 1703953.	7.8	148
154	Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy, 2017, 41, 261-268.	8.2	103
155	New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.	18.7	322
156	Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance. Nanoscale, 2017, 9, 15416-15422.	2.8	16
157	Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. Journal of Materials Chemistry C, 2017, 5, 11288-11293.	2.7	77
158	Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes. Physical Chemistry Chemical Physics, 2017, 19, 23414-23424.	1.3	19
159	SnO ₂ /SnS ₂ nanotubes for flexible room-temperature NH ₃ gas sensors. RSC Advances, 2017, 7, 52503-52509.	1.7	98
160	Nanowire-assembled Co ₃ O ₄ @NiCo ₂ O ₄ architectures for high performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24981-24988.	5.2	81
161	Synthesis and Electrochemical Properties of Porous \hat{l}_{\pm} -Co(OH) 2 and Co 3 O 4 Microspheres. Progress in Natural Science: Materials International, 2017, 27, 197-202.	1.8	47
162	Flexible in-plane microsupercapacitors with electrospun NiFe ₂ O ₄ nanofibers for portable sensing applications. Nanoscale, 2016, 8, 14986-14991.	2.8	49

#	Article	IF	CITATIONS
163	Metersâ€Long Flexible CoNiO ₂ â€Nanowires@Carbonâ€Fibers Based Wireâ€Supercapacitors for Wearable Electronics. Advanced Materials Technologies, 2016, 1, 1600142.	3.0	69
164	Wafer Scale Phaseâ€Engineered 1T―and 2Hâ€MoSe ₂ /Mo Core–Shell 3Dâ€Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 9831-9838.	11.1	208
165	Photodetectors based on two dimensional materials. Journal of Semiconductors, 2016, 37, 091001.	2.0	29
166	Low-Temperature Chemical Synthesis of Three-Dimensional Hierarchical Ni(OH) ₂ -Coated Ni Microflowers for High-Performance Enzyme-Free Glucose Sensor. Journal of Physical Chemistry C, 2016, 120, 25752-25759.	1.5	21
167	Flexible Photodetectors Based on 1D Inorganic Nanostructures. Advanced Science, 2016, 3, 1500287.	5.6	131
168	Polymerâ€Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. Advanced Materials Technologies, 2016, 1, 1600136.	3.0	122
169	Enhancing Photoresponsivity of Self-Aligned MoS ₂ Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. ACS Nano, 2016, 10, 7451-7457.	7.3	86
170	Highâ€Performance Allâ€Polymer Photoresponse Devices Based on Acceptor–Acceptor Conjugated Polymers. Advanced Functional Materials, 2016, 26, 6306-6315.	7.8	88
171	Fully integrated electromagnetic actuator using resin-bonded NdFeB micromagnets. , 2016, , .		0
172	Facile construction of novel CoMoO 4 microplates@CoMoO 4 microprisms structures for well-stable supercapacitors. Progress in Natural Science: Materials International, 2016, 26, 243-252.	1.8	21
173	Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Science China Materials, 2016, 59, 173-181.	3.5	41
174	Shape-Controlled Synthesis of Co ₂ P Nanostructures and Their Application in Supercapacitors. ACS Applied Materials & Supercapacitors.	4.0	319
175	Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today, 2016, 11, 82-97.	6.2	73
176	Self-supported Zn ₃ P ₂ nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale, 2016, 8, 8666-8672.	2.8	63
177	Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscale, 2016, 8, 5219-5225.	2.8	64
178	Flexible and free-standing ternary Cd ₂ GeO ₄ nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance. Nanotechnology, 2016, 27, 095602.	1.3	12
179	Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Research, 2016, 9, 424-434.	5.8	107
180	An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23, 7-14.	8.2	467

#	Article	IF	Citations
181	Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe ₂ /MoS ₂ van der Waals Heterostructures. ACS Nano, 2016, 10, 3852-3858.	7.3	453
182	Low-Temperature and Ultrafast Synthesis of Patternable Few-Layer Transition Metal Dichacogenides with Controllable Stacking Alignment by a Microwave-Assisted Selenization Process. Chemistry of Materials, 2016, 28, 1147-1154.	3.2	22
183	CuCo ₂ O ₄ Nanowires Grown on a Ni Wire for Highâ€Performance, Flexible Fiber Supercapacitors. ChemElectroChem, 2015, 2, 1042-1047.	1.7	93
184	High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015, 8, 2162-2169.	5.8	86
185	Electrospun porous CuCo ₂ O ₄ nanowire network electrode for asymmetric supercapacitors. RSC Advances, 2015, 5, 96448-96454.	1.7	77
186	Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Science Bulletin, 2015, 60, 101-108.	4.3	41
187	Single-crystalline In ₂ S ₃ nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7, 5046-5052.	2.8	70
188	Flexible fiber energy storage and integrated devices: recent progress and perspectives. Materials Today, 2015, 18, 265-272.	8.3	146
189	Self-Induced Uniaxial Strain in MoS ₂ Monolayers with Local van der Waals-Stacked Interlayer Interactions. ACS Nano, 2015, 9, 2704-2710.	7.3	47
190	Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe ₂ /carbon cloth electrodes. Journal of Materials Chemistry A, 2015, 3, 7910-7918.	5.2	123
191	Ternary oxide nanostructured materials for supercapacitors: a review. Journal of Materials Chemistry A, 2015, 3, 10158-10173.	5.2	320
192	High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires. Nano Research, 2015, 8, 2822-2832.	5.8	53
193	Sheet-like MoSe ₂ /C composites with enhanced Li-ion storage properties. Journal of Materials Chemistry A, 2015, 3, 11857-11862.	5.2	198
194	A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy, 2015, 13, 131-139.	8.2	99
195	Electrical transport and photoresponse properties of single-crystalline p-type Cd3As2 nanowires. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	2.0	5
196	Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy, 2015, 15, 104-115.	8.2	263
197	InGaO ₃ (ZnO) Superlattice Nanowires for Highâ€Performance Ultraviolet Photodetectors. Advanced Electronic Materials, 2015, 1, 1500054.	2.6	29
198	Hierarchical CdS Nanowires Based Rigid and Flexible Photodetectors with Ultrahigh Sensitivity. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23507-23514.	4.0	105

#	Article	IF	CITATIONS
199	Rational Synthesis of Branched CoMoO ₄ @CoNiO ₂ Core/Shell Nanowire Arrays for All-Solid-State Supercapacitors with Improved Performance. ACS Applied Materials & Loterfaces, 2015, 7, 24204-24211.	4.0	79
200	Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Research, 2015, 8, 3544-3552.	5.8	52
201	Encapsulating Ca ₂ Ge ₇ O ₁₆ nanowires within graphene sheets as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 20673-20680.	5.2	20
202	A flexible spiral-type supercapacitor based on ZnCo ₂ O ₄ nanorod electrodes. Nanoscale, 2015, 7, 1921-1926.	2.8	228
203	Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. Nano Research, 2015, 8, 743-750.	5.8	52
204	Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44, 161-192.	18.7	429
205	Flexible Energy Unit Integrated Photodetecting Systems. , 2015, , .		O
206	Tin Microspheres Grown on Carbon Cloth as Binderâ€Free Integrated Anode for High Capacity Lithium Storage. Energy Technology, 2014, 2, 370-375.	1.8	10
207	Thermal conductivity control by oxygen defect concentration modification in reducible oxides: The case of Pr0.1Ce0.9O2â°Î thin films. Applied Physics Letters, 2014, 104, .	1.5	17
208	Scalable Oxygenâ€lon Transport Kinetics in Metalâ€Oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films. Advanced Functional Materials, 2014, 24, 1562-1574.	7.8	65
209	Sprayâ€Painted Binderâ€Free SnSe Electrodes for Highâ€Performance Energyâ€Storage Devices. ChemSusChem, 2014, 7, 308-313.	3.6	81
210	On the redox origin of surface trapping in AlGaN/GaN high electron mobility transistors. Journal of Applied Physics, 2014, 115, .	1.1	26
211	Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Research, 2014, 7, 1777-1787.	5.8	21
212	Microfluidic chips for cells capture using 3-D hydrodynamic structure array. Microsystem Technologies, 2014, 20, 485-491.	1.2	7
213	Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. Nano Research, 2014, 7, 272-283.	5.8	6
214	Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases. Advanced Functional Materials, 2014, 24, 4005-4014.	7.8	170
215	Fiberâ∈Based Flexible Allâ∈Solidâ∈State Asymmetric Supercapacitors for Integrated Photodetecting System. Angewandte Chemie - International Edition, 2014, 53, 1849-1853.	7.2	387
216	Core–Shell CuCo ₂ O ₄ @MnO ₂ Nanowires on Carbon Fabrics as Highâ€Performance Materials for Flexible, Allâ€Solidâ€State, Electrochemical Capacitors. ChemElectroChem, 2014, 1, 559-564.	1.7	149

#	Article	IF	Citations
217	A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR sensors. Biosensors and Bioelectronics, 2014, 54, 372-377.	5.3	73
218	Threeâ€Dimensional Structural Engineering for Energyâ€Storage Devices: From Microscope to Macroscope. ChemElectroChem, 2014, 1, 975-1002.	1.7	53
219	Memristorâ€Integrated Voltageâ€Stabilizing Supercapacitor System. Advanced Materials, 2014, 26, 4999-5004.	11.1	26
220	Investigation of Nonstoichiometry in Oxide Thin Films by Simultaneous <i>in Situ</i> Optical Absorption and Chemical Capacitance Measurements: Pr-Doped Ceria, a Case Study. Chemistry of Materials, 2014, 26, 1374-1379.	3.2	41
221	Themed issue: flexible electronics. Journal of Materials Chemistry C, 2014, 2, 1176.	2.7	5
222	Voltageâ€Controlled Nonstoichiometry in Oxide Thin Films: Pr _{0.1} Ce _{0.9} O _{2â~δ} Case Study. Advanced Functional Materials, 2014, 24, 7638-7644.	7.8	37
223	Si@SiO2 nanowires/carbon textiles cable-type anodes for high-capacity reversible lithium-ion batteries. RSC Advances, 2014, 4, 18391.	1.7	11
224	High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays. Journal of Materials Chemistry C, 2014, 2, 1270-1277.	2.7	53
225	Nonstoichiometry in Oxide Thin Films Operating under Anodic Conditions: A Chemical Capacitance Study of the Praseodymium–Cerium Oxide System. Chemistry of Materials, 2014, 26, 6622-6627.	3.2	39
226	Size-controlled synthesis of mesoporous Nb ₂ O ₅ microspheres for dye sensitized solar cells. RSC Advances, 2014, 4, 35546-35553.	1.7	43
227	Themed issue on flexible energy storage and conversion. Journal of Materials Chemistry A, 2014, 2, 10710.	5.2	8
228	High-Performance Hybrid Phenyl-C61-Butyric Acid Methyl Ester/Cd ₃ P ₂ Nanowire Ultravioletâ€"Visibleâ€"Near Infrared Photodetectors. ACS Nano, 2014, 8, 787-796.	7.3	82
229	Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10917-10922.	5.2	89
230	Constructing optimized wire electrodes for fiber supercapacitors. Nano Energy, 2014, 10, 99-107.	8.2	59
231	Integrated smart electrochromic windows for energy saving and storage applications. Chemical Communications, 2014, 50, 608-610.	2.2	175
232	Flexible TiO2/cellulose acetate hybrid film as a recyclable photocatalyst. RSC Advances, 2014, 4, 12640.	1.7	51
233	SnO ₂ @TiO ₂ Heterojunction Nanostructures for Lithiumâ€lon Batteries and Selfâ€Powered UV Photodetectors with Improved Performances. ChemElectroChem, 2014, 1, 108-115.	1.7	104
234	Defect and Transport Model of Ceria–Zirconia Solid Solutions: Ce _{0.8} Zr _{0.2} O _{2â~δ} —An Electrical Conductivity Study. Chemistry of Materials, 2014, 26, 5143-5150.	3.2	29

#	Article	IF	Citations
235	Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7, 1073-1082.	5.8	100
236	Flexible photodetectors with single-crystalline GaTe nanowires. Journal of Materials Chemistry C, 2014, 2, 6104-6110.	2.7	41
237	Electrical conductivity relaxation measurements: Application of low thermal mass heater stick. Solid State Ionics, 2014, 262, 914-917.	1.3	5
238	Flexible Energyâ€Storage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	11.1	1,153
239	Integrated Photoâ€supercapacitor Based on Biâ€polar TiO ₂ Nanotube Arrays with Selective Oneâ€6ide Plasmaâ€Assisted Hydrogenation. Advanced Functional Materials, 2014, 24, 1840-1846.	7.8	163
240	Hierarchical MnCo ₂ O ₄ nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale, 2014, 6, 8858-8864.	2.8	121
241	Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy, 2014, 8, 44-51.	8.2	248
242	Rechargeable Mg-Ion Batteries Based on WSe ₂ Nanowire Cathodes. ACS Nano, 2013, 7, 8051-8058.	7.3	244
243	Tin sulfide nanoribbons as high performance photoelectrochemical cells, flexible photodetectors and visible-light-driven photocatalysts. RSC Advances, 2013, 3, 2746.	1.7	96
244	Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy and Environmental Science, 2013, 6, 2965.	15.6	77
245	Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Research, 2013, 6, 525-534.	5.8	109
246	Characterization of out-of-plane cone metal microneedles and the function of transdermal delivery. Microsystem Technologies, 2013, 19, 617-621.	1.2	9
247	SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale, 2013, 5, 7831.	2.8	91
248	Highly Reversible Lithium Storage in Hierarchical Ca ₂ Ge ₇ O ₁₆ Nanowire Arrays/Carbon Textile Anodes. Chemistry - A European Journal, 2013, 19, 8650-8656.	1.7	50
249	Single-crystalline metal germanate nanowire–carbon textiles as binder-free, self-supported anodes for high-performance lithium storage. Nanoscale, 2013, 5, 10291.	2.8	53
250	High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Research, 2013, 6, 775-783.	5.8	125
251	New Energy Storage Option: Toward ZnCo ₂ O ₄ Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors. ACS Applied Materials & Diterfaces, 2013, 5, 10011-10017.	4.0	362
252	Facile synthesis and electrochemical properties of CoMn ₂ O ₄ anodes for high capacity lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2139-2143.	5.2	88

#	Article	IF	CITATIONS
253	Contact printing of horizontally aligned Zn ₂ GeO ₄ and In ₂ Ge ₂ O ₇ nanowire arrays for multi-channel field-effect transistors and their photoresponse performances. Journal of Materials Chemistry C, 2013, 1, 131-137.	2.7	37
254	Nonâ€stoichiometry in Oxide Thin Films: A Chemical Capacitance Study of the Praseodymium erium Oxide System. Advanced Functional Materials, 2013, 23, 2168-2174.	7.8	58
255	TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-lon Batteries. Scientific Reports, 2013, 3, 2007.	1.6	133
256	Flexible, Planarâ€Integrated, Allâ€Solidâ€State Fiber Supercapacitors with an Enhanced Distributedâ€Capacitance Effect. Small, 2013, 9, 1998-2004.	5.2	133
257	High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. Journal of Materials Chemistry A, 2013, 1, 7167.	5.2	203
258	Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Scientific Reports, 2013, 3, 1622.	1.6	136
259	NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2013, 1, 2468.	5.2	344
260	ZnS Nanostructures: Synthesis, Properties, and Applications. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 57-90.	6.8	104
261	Threeâ€Dimensional Hierarchical GeSe ₂ Nanostructures for High Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2013, 25, 1479-1486.	11.1	236
262	Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale, 2013, 5, 7041.	2.8	97
263	Flexible Asymmetric Supercapacitors Based upon Co ₉ S ₈ Nanorod//Co ₃ O ₄ @RuO ₂ Nanosheet Arrays on Carbon Cloth. ACS Nano, 2013, 7, 5453-5462.	7.3	613
264	Laterally Emitted Surface Second Harmonic Generation in a Single ZnTe Nanowire. Nano Letters, 2013, 13, 4224-4229.	4.5	50
265	Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Optics Express, 2013, 21, 7799.	1.7	52
266	Selective synthesis of Sb_2S_3 nanoneedles and nanoflowers for high performance rigid and flexible photodetectors. Optics Express, 2013, 21, 13639.	1.7	45
267	Structural Engineering for High Energy and Voltage Output Supercapacitors. Chemistry - A European Journal, 2013, 19, 6451-6458.	1.7	22
268	Contact printing of horizontally-aligned p-type Zn ₃ P ₂ nanowire arrays for rigid and flexible photodetectors. Nanotechnology, 2013, 24, 095703.	1.3	22
269	Highâ€Performance Organicâ€Inorganic Hybrid Photodetectors Based on P3HT:CdSe Nanowire Heterojunctions on Rigid and Flexible Substrates. Advanced Functional Materials, 2013, 23, 1202-1209.	7.8	213
270	Two-photon pumped lasing in a single CdS microwire. Applied Physics Letters, 2013, 102, .	1.5	21

#	Article	IF	Citations
271	Singleâ€Crystalline pâ€Type Zn ₃ As ₂ Nanowires for Fieldâ€Effect Transistors and Visibleâ€Light Photodetectors on Rigid and Flexible Substrates. Advanced Functional Materials, 2013, 23, 2681-2690.	7.8	79
272	Highly OrderedTiO2Macropore Arrays as Transparent Photocatalysts. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	3
273	TiO ₂ and N-Doped TiO ₂ Induced Photocatalytic Inactivation of <i>Staphylococcus aureus</i> under 405 nm LED Blue Light Irradiation. International Journal of Photoenergy, 2012, 2012, 1-5.	1.4	6
274	Nd:YAG Lasers Treating of Carious Lesion and Root Canal In Vitro. International Journal of Photoenergy, 2012, 2012, 1-5.	1.4	0
275	Zn_2GeO_4 and In_2Ge_2O_7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Optics Express, 2012, 20, 2982.	1.7	96
276	Enhanced anisotropy of the nonlinear absorption in the individual Au nanoparticles functionalized KNbO_3 sub-microwire. Optics Express, 2012, 20, 24209.	1.7	3
277	Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment. CrystEngComm, 2012, 14, 3063.	1.3	45
278	Impact of Moisture and Fluorocarbon Passivation on the Current Collapse of AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2012, 33, 1378-1380.	2.2	31
279	High-performance photodetectors, photocatalysts, and gas sensors based on polyol reflux synthesized porous ZnO nanosheets. CrystEngComm, 2012, 14, 4582.	1.3	46
280	Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry, 2012, 22, 21647.	6.7	310
281	Shape evolution and applications in water purification: the case of CVD-grown Zn2SiO4 straw-bundles. Journal of Materials Chemistry, 2012, 22, 5330.	6.7	33
282	Gas sensors, thermistor and photodetector based on ZnS nanowires. Journal of Materials Chemistry, 2012, 22, 6845.	6.7	140
283	Metal oxide nanowire transistors. Journal of Materials Chemistry, 2012, 22, 13428.	6.7	45
284	Needle-like Zn-doped SnO ₂ nanorods with enhanced photocatalytic and gas sensing properties. Nanotechnology, 2012, 23, 105502.	1.3	98
285	Multilayer TiO2 nanorod cloth/nanorod array electrode for dye-sensitized solar cells and self-powered UV detectors. Nanoscale, 2012, 4, 3350.	2.8	66
286	ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry, 2012, 22, 9379.	6.7	75
287	Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 23541.	6.7	132
288	Fast fabrication of a WO3 \hat{A} -2H2O thin film with improved electrochromic properties. Journal of Materials Chemistry, 2012, 22, 19904.	6.7	73

#	Article	IF	CITATIONS
289	Visible-light-driven photocatalytic and photoelectrochemical properties of porous $SnSx(x = 1,2)$ architectures. CrystEngComm, 2012, 14, 3163.	1.3	115
290	Transparent metal oxide nanowire transistors. Nanoscale, 2012, 4, 3001.	2.8	44
291	Porous SnO2 nanoflowers derived from tin sulfide precursors as high performance gas sensors. CrystEngComm, 2012, 14, 6654.	1.3	31
292	Hierarchical Three-Dimensional ZnCo ₂ O ₄ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters, 2012, 12, 3005-3011.	4.5	967
293	Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics. Journal of Electroceramics, 2012, 28, 62-69.	0.8	78
294	(High Temperature Materials Division Outstanding Achievement Award) Measurement and Modeling of Electrical, Mechanical, and Chemical Properties of a Model Mixed Ionic Electronic Conductor: Pr Doped Ceria. ECS Transactions, 2011, 33, 51-57.	0.3	11
295	Electric transport, reversible wettability and chemical sensing of single-crystalline zigzag Zn2SnO4 nanowires. Journal of Materials Chemistry, 2011, 21, 17236.	6.7	39
296	Controlled synthesis of monodispersed hematite microcubes and their properties. CrystEngComm, 2011, 13, 7114.	1.3	31
297	Self-organized hierarchical zinc phosphide nanoribbon–zinc sulfide nanowire heterostructures. CrystEngComm, 2011, 13, 7305.	1.3	7
298	High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. Journal of Materials Chemistry, 2011, 21, 12852.	6.7	131
299	Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays. Journal of Materials Chemistry, 2011, 21, 19086.	6.7	54
300	Porous WO3 with enhanced photocatalytic and selective gas sensing properties. CrystEngComm, 2011, 13, 6393.	1.3	43
301	Simple Room-Temperature Mineralization Method to SrWO ₄ Micro/Nanostructures and Their Photocatalytic Properties. Journal of Physical Chemistry C, 2011, 115, 15778-15784.	1.5	40
302	Nanowires Assembled SnO ₂ Nanopolyhedrons with Enhanced Gas Sensing Properties. ACS Applied Materials & Distriction (2011), 3, 2112-2117.	4.0	125
303	Transferable and Flexible Nanorod-Assembled TiO ₂ Cloths for Dye-Sensitized Solar Cells, Photodetectors, and Photocatalysts. ACS Nano, 2011, 5, 8412-8419.	7.3	209
304	Zinc-oleate complex as efficient precursor for 1-D ZnO nanostructures: synthesis and properties. CrystEngComm, 2011, 13, 2629.	1.3	35
305	Ultrathin In ₂ O ₃ Nanowires with Diameters below 4 nm: Synthesis, Reversible Wettability Switching Behavior, and Transparent Thin-Film Transistor Applications. ACS Nano, 2011, 5, 6148-6155.	7.3	98
306	Indium Oxide Nanospirals Made of Kinked Nanowires. ACS Nano, 2011, 5, 2155-2161.	7.3	55

#	Article	IF	CITATIONS
307	One-dimensional iron oxides nanostructures. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1190-1199.	2.0	15
308	Growth of Directly Transferable In ₂ O ₃ Nanowire Mats for Transparent Thinâ€film Transistor Applications. Advanced Materials, 2011, 23, 771-775.	11.1	96
309	Mechanical, Electrical, and Optical Properties of (Pr,Ce)O ₂ Solid Solutions: Kinetic Studies. ECS Transactions, 2011, 35, 1137-1144.	0.3	14
310	Microstructure and Photoluminescence Studies of Sb-Doped SnO ₂ Zigzag Nanobelts. Journal of Nanoscience and Nanotechnology, 2010, 10, 6629-6633.	0.9	4
311	One-dimensional nanostructures for electronic and optoelectronic devices. Frontiers of Optoelectronics in China, 2010, 3, 125-138.	0.2	26
312	Fully transparent flexible transistors built on metal oxide nanowires. Frontiers of Optoelectronics in China, 2010, 3, 217-227.	0.2	4
313	Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties. Nanoscale Research Letters, 2010, 5, 570-575.	3.1	71
314	One-Dimensional Nanostructures for Photodetectors. Recent Patents on Nanotechnology, 2010, 4, 20-31.	0.7	54
315	Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano, 2010, 4, 4403-4411.	7.3	729
316	Solution Growth and Cathodoluminescence of Novel SnO2 Coreâ^Shell Homogeneous Microspheres. Journal of Physical Chemistry C, 2010, 114, 8235-8240.	1.5	48
317	Versatile Route to the Controlled Synthesis of Multilevel Branched Silicon Submicrometer/Nanostructures. Journal of Physical Chemistry C, 2010, 114, 134-138.	1.5	5
318	Transparent Silver-Nanoparticles/Nanorods-Decorated Zinc Oxide Nanowires. Journal of Physical Chemistry C, 2010, 114, 21088-21093.	1.5	19
319	Fast-heating-vapor-trapping method to aligned indium oxide bi-crystalline nanobelts arrays and their electronic properties. Journal of Materials Chemistry, 2010, 20, 10888.	6.7	20
320	<i>A Special Issue on</i> Nanowires. Science of Advanced Materials, 2010, 2, 243-244.	0.1	0
321	Photocatalytic Degradation of Isopropanol Over PbSnO3Nanostructures Under Visible Light Irradiation. Nanoscale Research Letters, 2009, 4, 274-280.	3.1	25
322	One-Dimensional Nanostructures and Devices of II–V Group Semiconductors. Nanoscale Research Letters, 2009, 4, 779-788.	3.1	37
323	Selective-Synthesis of High-Performance Single-Crystalline Sr ₂ Nb ₂ O ₇ Nanoribbon and SrNb ₂ O ₆ Nanoribbon and SrNb ₃ O ₆ O ₆ Nanoribbon and SrNb ₃ Nanoribbon and SrNb ₄ Nanoribbon and SrNb ₄ Nanoribbon and SrNb ₄ Nanoribbon and SrNb ₄ Nanoribbon and SrNb ₆ Nanoribbon and SrNb ₆ Nanoribbon and SrNb ₈ Nanoribbon and SrNb ₈ Nanoribbon and SrNb ₉	3.2	90
324	A Systematical Study on Photocatalytic Properties of AgMO $<$ sub $>$ 2 $<$ /sub $>$ (M = Al, Ga, In): Effects of Chemical Compositions, Crystal Structures, and Electronic Structures. Journal of Physical Chemistry C, 2009, 113, 1560-1566.	1.5	141

#	Article	IF	Citations
325	Large scale synthesis of fishbone-like ZnS nanostructures using ITO glass as the substrate. Journal of Alloys and Compounds, 2009, 482, L32-L35.	2.8	18
326	Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process. Journal of Alloys and Compounds, 2009, 486, L13-L16.	2.8	38
327	Vaporâ^'Solid Growth of One-Dimensional Layer-Structured Gallium Sulfide Nanostructures. ACS Nano, 2009, 3, 1115-1120.	7.3	111
328	Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 2009, 19, 828-839.	6.7	301
329	Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates. ACS Nano, 2009, 3, 73-79.	7.3	265
330	Fabrication of Mesoporous CdTe/ZnO@SiO ₂ Core/Shell Nanostructures with Tunable Dual Emission and Ultrasensitive Fluorescence Response to Metal Ions. Chemistry of Materials, 2009, 21, 68-77.	3. 2	81
331	Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Applied Physics Letters, 2009, 94, .	1.5	173
332	High-Performance Single-Crystalline Arsenic-Doped Indium Oxide Nanowires for Transparent Thin-Film Transistors and Active Matrix Organic Light-Emitting Diode Displays. ACS Nano, 2009, 3, 3383-3390.	7.3	88
333	Fabrication of Core/Shell Ge/SiO ₂ and Ge/CdS Nanospheres. Journal of Nanoscience and Nanotechnology, 2009, 9, 572-576.	0.9	2
334	1-D Hetero-Nanostructures: From Growth to Devices. Science of Advanced Materials, 2009, 1, 213-226.	0.1	24
335	ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. Journal of Materials Science, 2008, 43, 1460-1470.	1.7	26
336	pâ€Type Fieldâ€Effect Transistors of Singleâ€Crystal Zinc Telluride Nanobelts. Angewandte Chemie - International Edition, 2008, 47, 9469-9471.	7.2	41
337	Hierarchical WO ₃ Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties. Advanced Functional Materials, 2008, 18, 1922-1928.	7.8	548
338	Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures. IEEE Nanotechnology Magazine, 2008, 7, 668-682.	1.1	151
339	Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors. Chemistry of Materials, 2008, 20, 6779-6783.	3.2	44
340	Heteroepitaxial Growth of Orientation-Ordered ZnS Nanowire Arrays. Journal of Physical Chemistry C, 2008, 112, 12299-12303.	1.5	24
341	One-Step Thermo-Chemical Synthetic Method for Nanoscale One-Dimensional Heterostructures. Chemistry of Materials, 2008, 20, 3788-3790.	3.2	14
342	Bicrystalline Zn ₃ P ₂ and Cd ₃ P ₂ Nanobelts and Their Electronic Transport Properties. Chemistry of Materials, 2008, 20, 7319-7323.	3.2	34

#	Article	IF	Citations
343	Electron-Beam-Induced Synthesis and Characterization of W ₁₈ O ₄₉ Nanowires. Journal of Physical Chemistry C, 2008, 112, 5856-5859.	1.5	22
344	Single-Crystalline and Twinned Zn ₃ P ₂ Nanowires: Synthesis, Characterization, and Electronic Properties. Journal of Physical Chemistry C, 2008, 112, 16405-16410.	1.5	39
345	Design, Synthesis and Properties of Highly Functional Nanostructured Photocatalysts. Recent Patents on Nanotechnology, 2008, 2, 183-189.	0.7	16
346	Fabrication and Characterization of Metal Oxide Nanowire Sensors. Recent Patents on Nanotechnology, 2008, 2, 160-168.	0.7	25
347	Boron Nitride Nanotubes: Nanoparticles Functionalization and Junction Fabrication. Journal of Nanoscience and Nanotechnology, 2007, 7, 530-534.	0.9	17
348	Structure and cathodoluminescence of hierarchical Zn3P2â^•ZnS nanotube/nanowire heterostructures. Applied Physics Letters, 2007, 90, 073115.	1.5	16
349	Recent developments in single-crystal inorganic nanotubes synthesised from removable templates. International Journal of Nanotechnology, 2007, 4, 730.	0.1	25
350	SrSnO ₃ Nanostructures:  Synthesis, Characterization, and Photocatalytic Properties. Chemistry of Materials, 2007, 19, 4585-4591.	3.2	121
351	InP-GaP Bi-Coaxial Nanowires and Amorphous GaP Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3665-3668.	1.5	12
352	Fabrication of Coaxial Zn/ZnS Core/Shell Fibers on a Large Scale. Journal of Physical Chemistry C, 2007, 111, 5673-5676.	1.5	6
353	Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches. Journal of Physical Chemistry C, 2007, 111, 12673-12676.	1.5	116
354	Synthesis and Structures of High-Quality Single-Crystalline II3â^'V2Semiconductors Nanobelts. Journal of Physical Chemistry C, 2007, 111, 5044-5049.	1.5	29
355	Epitaxy of Single-Crystalline Zigzag Tin Dioxide Nanobelts. Crystal Growth and Design, 2007, 7, 2254-2257.	1.4	7
356	Self-Assembled Hierarchical Single-Crystalline \hat{l}^2 -SiC Nanoarchitectures. Crystal Growth and Design, 2007, 7, 35-38.	1.4	76
357	Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. Journal of Physics and Chemistry of Solids, 2007, 68, 2317-2320.	1.9	79
358	Self-Coiling of Ag2V4O11Nanobelts into Perfect Nanorings and Microloops. Journal of the American Chemical Society, 2006, 128, 11762-11763.	6.6	136
359	Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets. Journal of Physical Chemistry B, 2006, 110, 15146-15151.	1.2	305
360	Synthesis, characterization and field-emission properties of bamboo-like \hat{l}^2 -SiC nanowires. Nanotechnology, 2006, 17, 3468-3472.	1.3	146

#	Article	IF	CITATIONS
361	Tubular Carbon Nano-/Microstructures Synthesized from Graphite Powders by an in Situ Template Process. Journal of Physical Chemistry B, 2006, 110, 10714-10719.	1.2	16
362	Size-Tunable Synthesis of SiO2Nanotubes via a Simple In Situ Templatelike Process. Journal of Physical Chemistry B, 2006, 110, 23170-23174.	1.2	20
363	Self-Organized Hierarchical ZnS/SiO2Nanowire Heterostructures. Journal of Physical Chemistry B, 2006, 110, 7199-7202.	1.2	50
364	Unconventional Zigzag Indium Phosphide Single-Crystalline and Twinned Nanowires. Journal of Physical Chemistry B, 2006, 110, 20129-20132.	1.2	40
365	Hierarchical Saw-like ZnO Nanobelt/ZnS Nanowire Heterostructures Induced by Polar Surfaces. Journal of Physical Chemistry B, 2006, 110, 15689-15693.	1.2	100
366	Carbon-Coated Single-Crystalline Zinc Sulfide Nanowires. Journal of Physical Chemistry B, 2006, 110, 20777-20780.	1.2	29
367	Morphology-Controlled Synthesis of ZnO Nanostructures by a Simple Round-to-Round Metal Vapor Deposition Route. Journal of Physical Chemistry B, 2006, 110, 3973-3978.	1.2	51
368	Synthesis and Interface Structures of Zinc Sulfide Sheathed Zincâ^'Cadmium Nanowire Heterojunctions. Journal of Physical Chemistry B, 2006, 110, 14123-14127.	1.2	14
369	Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. Applied Physics Letters, 2006, 88, 123107.	1.5	69
370	A Simple Aqueous Mineralization Process to Synthesize Tetragonal Molybdate Microcrystallites. Crystal Growth and Design, 2006, 6, 247-252.	1.4	100
371	A novel method to fabricate complex three-dimensional microstructures. Microsystem Technologies, 2006, 12, 786-789.	1.2	3
372	Self-assembled ZnO 3D flowerlike nanostructures. Materials Letters, 2006, 60, 2530-2533.	1.3	62
373	Systematic Investigation of the Formation of 1D \hat{I} ±-Si3N4 Nanostructures by Using a Thermal-Decomposition/Nitridation Process. Chemistry - A European Journal, 2006, 12, 2987-2993.	1.7	48
374	Formation of Crystalline SrAl2O4 Nanotubes by a Roll-Up and Post-Annealing Approach. Angewandte Chemie - International Edition, 2006, 45, 4922-4926.	7.2	40
375	Single-Crystal Nanotubes of II3–V2 Semiconductors. Angewandte Chemie - International Edition, 2006, 45, 7568-7572.	7.2	82
376	The design, fabrication, and low-cost replication of a new type of micro-nano grating for DWDM. Microwave and Optical Technology Letters, 2006, 48, 1504-1507.	0.9	0
377	Single-source precursor for chemical vapour deposition of collapsed boron nitride nanotubes. Nanotechnology, 2006, 17, 5882-5888.	1.3	17
378	Morphology-controlled synthesis, growth mechanism and optical properties of ZnO nanonails. Chemical Physics Letters, 2005, 401, 414-419.	1.2	69

#	Article	IF	Citations
379	Synthesis and characterization of S-doped ZnO nanowires produced by a simple solution-conversion process. Chemical Physics Letters, 2005, 401, 529-533.	1.2	58
380	Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. Chemical Physics Letters, 2005, 404, 69-73.	1.2	101
381	High-yield solvo-thermal synthesis of carbon nanotubes from sp3 hydrocarbons. Applied Physics A: Materials Science and Processing, 2005, 81, 523-526.	1.1	2
382	Fabrication of PbCrO4nanostructures: from nanotubes to nanorods. Nanotechnology, 2005, 16, 2619-2624.	1.3	19
383	Lowâ€Temperature Thermal Bonding of PMMA Microfluidic Chips. Analytical Letters, 2005, 38, 1127-1136.	1.0	49
384	Synthesis of Single-Crystal CdS Microbelts Using a Modified Thermal Evaporation Method and Their Photoluminescence. Journal of Physical Chemistry B, 2005, 109, 9294-9298.	1.2	107
385	Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process. Journal of Physical Chemistry B, 2005, 109, 10578-10583.	1.2	178
386	Growth of Self-Organized Hierarchical ZnO Nanoarchitectures by a Simple In/In2S3Controlled Thermal Evaporation Process. Journal of Physical Chemistry B, 2005, 109, 10779-10785.	1.2	91
387	Synthesis and Optical Properties of S-Doped ZnO Nanostructures:Â Nanonails and Nanowires. Journal of Physical Chemistry B, 2005, 109, 5491-5496.	1.2	167
388	CdS Multipod-Based Structures through a Thermal Evaporation Process. Crystal Growth and Design, 2005, 5, 1085-1089.	1.4	89
389	Self-sacrificing template route to novel patterns of radially aligned Bi2(Se,S)3nanorods and Bi2Se3flakes. Nanotechnology, 2004, 15, 1530-1534.	1.3	20
390	Polyol-mediated preparation of disklike (ZnSe)2·EN precursor and its conversion to ZnSe crystals with quasi-network structure. Journal of Materials Research, 2004, 19, 1369-1373.	1.2	6
391	A rapid route for the synthesis of submicron Se and Te rod-like crystals. Materials Research Bulletin, 2004, 39, 2077-2082.	2.7	5
392	Microwave-assisted polyol synthesis of nanoscale SnSx (x=1, 2) flakes. Journal of Crystal Growth, 2004, 260, 469-474.	0.7	89
393	Synthesis of ZrC hollow nanospheres at low temperature. Journal of Crystal Growth, 2004, 262, 277-280.	0.7	31
394	Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route. Journal of Crystal Growth, 2004, 263, 232-236.	0.7	49
395	AOT-Microemulsions-Based Formation and Evolution of PbWO4 Crystals. Journal of Physical Chemistry B, 2004, 108, 11280-11284.	1.2	106
396	Assembly of carbide nanostructures at low temperature. International Journal of Nanotechnology, 2004, 1, 366.	0.1	6

#	Article	IF	CITATIONS
397	Aligned SnS 2 nanotubes fabricated via a template-assisted solvent-relief process. Applied Physics A: Materials Science and Processing, 2003, 77, 747-749.	1.1	28
398	Low-temperature synthesis of metal tungstates nanocrystallites in ethylene glycol. Materials Research Bulletin, 2003, 38, 1783-1789.	2.7	59
399	Microwave-assisted synthesis of metal sulfides in ethylene glycol. Materials Chemistry and Physics, 2003, 82, 206-209.	2.0	106
400	Polyol mediated synthesis of nanocrystalline M3SbS3 (M=Ag, Cu). Materials Research Bulletin, 2003, 38, 509-513.	2.7	10
401	The synthesis and characterization of nanocrystalline Cu- and Ag-based multinary sulfide semiconductors. Materials Research Bulletin, 2003, 38, 823-830.	2.7	35
402	A Low-Temperature in situ Template Reduction-Carbonization Route to TiC Submicrometer Hollow Spheres and Nanorods ChemInform, 2003, 34, no.	0.1	0
403	Synthesis of Silver Selenide Dendritic Crystals via Glycothermal Route ChemInform, 2003, 34, no.	0.1	0
404	Rapid Synthesis of SnSe Nanowires via an Ethylenediamine-Assisted Polyol Route ChemInform, 2003, 34, no.	0.1	0
405	Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process. Chemical Physics Letters, 2003, 370, 334-337.	1.2	79
406	Silicon carbide hollow nanospheres, nanowires and coaxial nanowires. Chemical Physics Letters, 2003, 375, 177-184.	1.2	118
407	Large-scale synthesis of (Bi(Bi2S3)9I3)0.667 submicrometer needle-like crystals via a novel polyol route. Journal of Crystal Growth, 2003, 249, 331-334.	0.7	15
408	Novel polyol route to AgBiS2 nanorods. Journal of Crystal Growth, 2003, 252, 199-201.	0.7	48
409	A rapid ethylenediamine-assisted polyol route to synthesize Sb2E3 (E=S, Se) nanowires. Journal of Crystal Growth, 2003, 252, 350-354.	0.7	26
410	The synthesis of Cu3BiS3 nanorods via a simple ethanol-thermal route. Journal of Crystal Growth, 2003, 253, 512-516.	0.7	33
411	Polyol-mediated synthesis of porous nanocrystalline CulnS2 foam. Journal of Crystal Growth, 2003, 254, 75-79.	0.7	36
412	Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route. Journal of Crystal Growth, 2003, 254, 225-228.	0.7	119
413	Characterization of ZnSe spheres via a rapid polyol process. Journal of Crystal Growth, 2003, 257, 276-279.	0.7	14
414	Phase-controlled synthesis and characterization of nickel sulfides nanorods. Journal of Solid State Chemistry, 2003, 173, 227-231.	1.4	42

#	Article	IF	CITATIONS
415	General synthesis of metal sulfides nanocrystallines via a simple polyol route. Journal of Solid State Chemistry, 2003, 173, 232-235.	1.4	38
416	Solution-phase synthesis of monodispersed SnTe nanocrystallites at room temperature. Inorganic Chemistry Communication, 2003, 6, 181-184.	1.8	27
417	Novel polyol route to nanoscale tin sulfides flaky crystallines. Inorganic Chemistry Communication, 2003, 6, 178-180.	1.8	42
418	Microwave synthesis of AgBiS2 dendrites in aqueous solution. Inorganic Chemistry Communication, 2003, 6, 710-712.	1.8	45
419	Synthesis of ternary sulfides Cu(Ag)–Bi–S coral-shaped crystals from single-source precursors. Journal of Crystal Growth, 2003, 257, 293-296.	0.7	31
420	A Low-temperature in situ Template Reduction-Carbonization Route to TiC Submicrometer Hollow Spheres and Nanorods. Chemistry Letters, 2003, 32, 116-117.	0.7	10
421	Rapid Synthesis of SnSe Nanowires via an Ethylenediamine-assisted Polyol Route. Chemistry Letters, 2003, 32, 426-427.	0.7	23
422	Synthesis of Silver Selenide Dendritic Crystals via Glycothermal Route. Chemistry Letters, 2003, 32, 210-211.	0.7	5
423	Hydrothermal preparation of luminescent PbWO4 nanocrystallites. Materials Letters, 2002, 57, 565-568.	1.3	41
424	A simple route to prepare nanocrystalline titanium carbonitride. Materials Research Bulletin, 2002, 37, 1207-1211.	2.7	32
425	Characterization of LiNbO3 nanocrystals prepared via a convenient hydrothermal route. Materials Research Bulletin, 2002, 37, 1791-1796.	2.7	59
426	Growth of belt-like SnS crystals from ethylenediamine solution. Journal of Crystal Growth, 2002, 244, 333-338.	0.7	65
427	Low-temperature synthesis and characterization of \hat{l}^2 -La2S3 nanorods. Journal of Crystal Growth, 2002, 245, 304-308.	0.7	16
428	Blue-light emission of nanocrystalline CaS and SrS synthesized via a solvothermal route. Chemical Physics Letters, 2002, 351, 385-390.	1.2	37
429	Synthesis of CuS Millimeter-Scale Tubular Crystals. Chemistry Letters, 2001, 30, 494-495.	0.7	27
430	Characterization of PbSnS3 Nanorods Prepared via an Iodine Transport Hydrothermal Method. Journal of Solid State Chemistry, 2001, 160, 50-53.	1.4	17
431	Synthesis of SnS2 nanocrystals via a solvothermal process. Journal of Crystal Growth, 2001, 225, 92-95.	0.7	57
432	Template-assisted synthesis of Sb8O10(OH)2I2 tubular crystals under hydrothermal conditions. Journal of Crystal Growth, 2001, 233, 287-291.	0.7	5

#	Article	IF	CITATIONS
433	The synthesis of SbSI rodlike crystals with studded pyramids. Journal of Crystal Growth, 2001, 233, 774-778.	0.7	15
434	Dielectric miceocavity resonators based on silicon mold. , 0, , .		0