Miho Yanagisawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376128/publications.pdf Version: 2024-02-01

Μιμο Υληλοιελιώλ

#	Article	IF	CITATIONS
1	Shape Deformation of Ternary Vesicles Coupled with Phase Separation. Physical Review Letters, 2008, 100, 148102.	7.8	183
2	Growth Dynamics of Domains in Ternary Fluid Vesicles. Biophysical Journal, 2007, 92, 115-125.	0.5	116
3	DNA cytoskeleton for stabilizing artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7228-7233.	7.1	113
4	Oriented Reconstitution of a Membrane Protein in a Giant Unilamellar Vesicle: Experimental Verification with the Potassium Channel KcsA. Journal of the American Chemical Society, 2011, 133, 11774-11779.	13.7	104
5	Cell-Sized confinement in microspheres accelerates the reaction of gene expression. Scientific Reports, 2012, 2, 283.	3.3	79
6	UV-Induced Bursting of Cell-Sized Multicomponent Lipid Vesicles in a Photosensitive Surfactant Solution. Journal of the American Chemical Society, 2012, 134, 4898-4904.	13.7	75
7	Phase separation in crowded micro-spheroids: DNA–PEG system. Chemical Physics Letters, 2012, 539-540, 157-162.	2.6	63
8	Universal glass-forming behavior of in vitro and living cytoplasm. Scientific Reports, 2017, 7, 15143.	3.3	63
9	Cell-sized confinement controls generation and stability of a protein wave for spatiotemporal regulation in cells. ELife, 2019, 8, .	6.0	43
10	Physicochemical Analysis from Real-Time Imaging of Liposome Tubulation Reveals the Characteristics of Individual F-BAR Domain Proteins. Langmuir, 2013, 29, 328-336.	3.5	42
11	Dropletâ€Shooting and Sizeâ€Filtration (DSSF) Method for Synthesis of Cellâ€Sized Liposomes with Controlled Lipid Compositions. ChemBioChem, 2015, 16, 2029-2035.	2.6	42
12	Multiple patterns of polymer gels in microspheres due to the interplay among phase separation, wetting, and gelation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15894-15899.	7.1	39
13	Generation of Giant Unilamellar Liposomes Containing Biomacromolecules at Physiological Intracellular Concentrations using Hypertonic Conditions. ACS Synthetic Biology, 2014, 3, 870-874.	3.8	39
14	Adhesive force between paired microdroplets coated with lipid monolayers. Soft Matter, 2013, 9, 5891.	2.7	34
15	Phase Separation on a Phospholipid Membrane Inducing a Characteristic Localization of DNA Accompanied by Its Structural Transition. Journal of Physical Chemistry Letters, 2010, 1, 3391-3395.	4.6	33
16	Periodic modulation of tubular vesicles induced by phase separation. Physical Review E, 2010, 82, 051928.	2.1	29
17	Increasing Elasticity through Changes in the Secondary Structure of Gelatin by Gelation in a Microsized Lipid Space. ACS Central Science, 2018, 4, 477-483.	11.3	29
18	Phase separation in binary polymer solution: Gelatin/Poly(ethylene glycol) system. Journal of Molecular Liquids, 2014, 200, 2-6.	4.9	28

MIHO YANAGISAWA

#	Article	IF	CITATIONS
19	Characteristic Behavior of Crowding Macromolecules Confined in Cell-Sized Droplets. International Review of Cell and Molecular Biology, 2014, 307, 175-204.	3.2	25
20	Adhesion of binary giant vesicles containing negative spontaneous curvature lipids induced by phase separation. European Physical Journal E, 2008, 25, 403-13.	1.6	24
21	Cell-size confinement effect on protein diffusion in crowded poly(ethylene)glycol solution. Physical Chemistry Chemical Physics, 2018, 20, 8842-8847.	2.8	24
22	Phase behaviors of agarose gel. AIP Advances, 2013, 3, .	1.3	18
23	Cyclic Micropipette Aspiration Reveals Viscoelastic Change of a Gelatin Microgel Prepared Inside a Lipid Droplet. Langmuir, 2020, 36, 5186-5191.	3.5	17
24	Micro-segregation induced by bulky-head lipids: formation of characteristic patterns in a giant vesicle. Soft Matter, 2012, 8, 488-495.	2.7	16
25	Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion. Journal of Physical Chemistry B, 2020, 124, 1090-1098.	2.6	16
26	Reconstitution of intracellular environments <i>in vitro</i> and in artificial cells. Biophysics (Nagoya-shi, Japan), 2014, 10, 43-48.	0.4	15
27	DNA Origami Nanoplateâ€Based Emulsion with Nanopore Function. Angewandte Chemie - International Edition, 2019, 58, 15299-15303.	13.8	15
28	Sol–gel transition and phase separation in ternary system of gelatin-water–poly(ethylene glycol) oligomer. Journal of Molecular Liquids, 2014, 200, 47-51.	4.9	14
29	Microfluidic Formation of Honeycomb-Patterned Droplets Bounded by Interface Bilayers via Bimodal Molecular Adsorption. Micromachines, 2020, 11, 701.	2.9	13
30	Membrane Surface Modulates Slow Diffusion in Small Crowded Droplets. Langmuir, 2021, 37, 437-444.	3.5	12
31	Liposomal adhesion <i>via</i> electrostatic interactions and osmotic deflation increase membrane tension and lipid diffusion coefficient. Soft Matter, 2020, 16, 4549-4554.	2.7	11
32	Numerical investigations of the dynamics of two-component vesicles. Journal of Physics Condensed Matter, 2011, 23, 284103.	1.8	10
33	Single Micrometer-Sized Gels: Unique Mechanics and Characters for Applications. Gels, 2018, 4, 29.	4.5	10
34	Liposomal internal viscosity affects the fate of membrane deformation induced by hypertonic treatment. Soft Matter, 2017, 13, 9192-9198.	2.7	8
35	Simultaneous crosslinking induces macroscopically phase-separated microgel from a homogeneous mixture of multiple polymers. Applied Materials Today, 2021, 22, 100937.	4.3	8
36	Enzymatic synthesis of hyaluronan hybrid urinary trypsin inhibitor. Carbohydrate Research, 2015, 413, 129-134.	2.3	6

MIHO YANAGISAWA

#	Article	IF	CITATIONS
37	Evaporation Patterns of Dextran–Poly(Ethylene Glycol) Droplets with Changes in Wettability and Compatibility. Life, 2022, 12, 373.	2.4	6
38	Dynamics of Spinodal Decomposition in a Ternary Gelling System. Gels, 2018, 4, 26.	4.5	5
39	Emergence of a thread-like pattern with charged phospholipids on an oil/water interface. Journal of Chemical Physics, 2012, 136, 204903.	3.0	4
40	Sol–Gel Coexisting Phase of Polymer Microgels Triggers Spontaneous Buckling. Langmuir, 2019, 35, 2283-2288.	3.5	4
41	Lipid Membrane Effect on the Elasticity of Gelatin Microgel Prepared inside Lipid Microdroplets. Nihon Reoroji Gakkaishi, 2019, 47, 55-59.	1.0	3
42	Unique phase behavior in cell size space: synergistic effect of molecular crowding and confinement. Biophysical Reviews, 2020, 12, 385-386.	3.2	3
43	Shape Deformation of Vesicle Coupled with Phase Separation. Progress of Theoretical Physics Supplement, 2008, 175, 71-80.	0.1	2
44	DNA Origami Nanoplateâ€Based Emulsion with Nanopore Function. Angewandte Chemie, 2019, 131, 15443-15447.	2.0	2
45	Perpendicular alignment of the phase-separated boundary in adhered polymer droplets. Soft Matter, 2021, 17, 9499-9506.	2.7	1
46	2P180 Molecular crowding effects on intracellular mechanical environments(12. Cell biology,Poster). Seibutsu Butsuri, 2013, 53, S188.	0.1	0
47	2P218 Generation of artificial cells that mimic living cells(13B. Biological & Artifical membrane:) Tj ETQq1 10.	784314 rgBT 0 . 1	/Qyerlock 10
48	Microdroplets as a Model System for the Study of Macromolecular Crowding in Cells. Seibutsu Butsuri, 2015, 55, 246-249.	0.1	0
49	Basic Challenges for Liposome Applications and Their Possible Solutions: Membrane Structure and Confinement. Membrane, 2019, 44, 234-238.	0.0	0
50	Visualizing Molecular Chaperone Controlled Resilient Cell Traction Force by Micropost Arrays Fabricated by Two-Photon Initiated Polymerization. Journal of Fiber Science and Technology, 2020, 76, 288-295.	0.4	0