Erwin F Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews Cancer, 2009, 9, 537-549.	12.8	2,122
2	AP-1: a double-edged sword in tumorigenesis. Nature Reviews Cancer, 2003, 3, 859-868.	12.8	1,867
3	A Validated Regulatory Network for Th17 Cell Specification. Cell, 2012, 151, 289-303.	13.5	1,010
4	Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature, 2005, 437, 369-375.	13.7	538
5	A Switch from White to Brown Fat Increases Energy Expenditure in Cancer-Associated Cachexia. Cell Metabolism, 2014, 20, 433-447.	7.2	535
6	Fos/AP-1 proteins in bone and the immune system. Immunological Reviews, 2005, 208, 126-140.	2.8	457
7	Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nature Genetics, 2000, 24, 184-187.	9.4	447
8	Liver Tumor Development. Cell, 2003, 112, 181-192.	13.5	445
9	JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells. Cell, 2004, 119, 431-443.	13.5	384
10	NF-κB p50 and p52 Regulate Receptor Activator of NF-κB Ligand (RANKL) and Tumor Necrosis Factor-induced Osteoclast Precursor Differentiation by Activating c-Fos and NFATc1. Journal of Biological Chemistry, 2007, 282, 18245-18253.	1.6	364
11	Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nature Medicine, 1999, 5, 314-319.	15.2	348
12	p38α suppresses normal and cancer cell proliferation by antagonizing the JNK–c-Jun pathway. Nature Genetics, 2007, 39, 741-749.	9.4	342
13	Impaired Long-Term Memory and NR2A-Type NMDA Receptor-Dependent Synaptic Plasticity in Mice Lacking c-Fos in the CNS. Journal of Neuroscience, 2003, 23, 9116-9122.	1.7	321
14	Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes and Development, 2016, 30, 489-501.	2.7	239
15	Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO Journal, 2002, 21, 1782-1790.	3.5	234
16	JunB is essential for mammalian placentation. EMBO Journal, 1999, 18, 934-948.	3.5	232
17	Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nature Cell Biology, 2012, 14, 1203-1211.	4.6	218
18	Chronic Myeloid Leukemia with Increased Granulocyte Progenitors in Mice Lacking JunB Expression in the Myeloid Lineage. Cell, 2001, 104, 21-32.	13.5	215

#	Article	IF	CITATIONS
19	S100A8-S100A9 Protein Complex Mediates Psoriasis by Regulating the Expression of Complement Factor C3. Immunity, 2013, 39, 1171-1181.	6.6	205
20	C-Jun Nh2-Terminal Kinase (Jnk)1 and Jnk2 Have Similar and Stage-Dependent Roles in Regulating T Cell Apoptosis and Proliferation. Journal of Experimental Medicine, 2001, 193, 317-328.	4.2	199
21	Psoriasis: what we have learned from mouse models. Nature Reviews Rheumatology, 2010, 6, 704-714.	3.5	190
22	Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. Journal of Cell Biology, 2004, 164, 613-623.	2.3	188
23	Promoter Specificity and Biological Activity of Tethered AP-1 Dimers. Molecular and Cellular Biology, 2002, 22, 4952-4964.	1.1	171
24	Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10525-10530.	3.3	163
25	Calprotectin: from biomarker to biological function. Gut, 2021, 70, 1978-1988.	6.1	163
26	Inhibition of De Novo NAD + Synthesis by Oncogenic URI Causes Liver Tumorigenesis through DNA Damage. Cancer Cell, 2014, 26, 826-839.	7.7	162
27	Mouse models for liver cancer. Molecular Oncology, 2013, 7, 206-223.	2.1	144
28	Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21264-21269.	3.3	135
29	Chronic skin inflammation leads to bone loss by IL-17–mediated inhibition of Wnt signaling in osteoblasts. Science Translational Medicine, 2016, 8, 330ra37.	5.8	133
30	JunB can substitute for Jun in mouse development and cell proliferation. Nature Genetics, 2002, 30, 158-166.	9.4	132
31	Jun signalling in the epidermis: From developmental defects to psoriasis and skin tumors. International Journal of Biochemistry and Cell Biology, 2006, 38, 1043-1049.	1.2	131
32	Targeting <i>miR-21</i> to Treat Psoriasis. Science Translational Medicine, 2014, 6, 225re1.	5.8	123
33	Fos and Jun Proteins Are Specifically Expressed During Differentiation of Human Keratinocytes. Journal of Investigative Dermatology, 2005, 124, 212-220.	0.3	109
34	Regulation of Steatohepatitis and PPARÎ ³ Signaling by Distinct AP-1 Dimers. Cell Metabolism, 2014, 19, 84-95.	7.2	99
35	Specific roles for dendritic cell subsets during initiation and progression of psoriasis. EMBO Molecular Medicine, 2014, 6, 1312-1327.	3.3	92
36	c-Jun Controls Histone Modifications, NF-κB Recruitment, and RNA Polymerase II Function To Activate the <i>ccl2</i> Gene. Molecular and Cellular Biology, 2008, 28, 4407-4423.	1.1	83

#	Article	IF	CITATIONS
37	Essential role of RSK2 in c-Fos–dependent osteosarcoma development. Journal of Clinical Investigation, 2005, 115, 664-672.	3.9	81
38	Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. Journal of Experimental Medicine, 2017, 214, 1387-1409.	4.2	80
39	Rhabdomyosarcoma development in mice lacking Trp53 and Fos. Cancer Cell, 2003, 4, 477-482.	7.7	68
40	Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Research, 2020, 30, 885-901.	5.7	68
41	Fra-2–expressing macrophages promote lung fibrosis. Journal of Clinical Investigation, 2019, 129, 3293-3309.	3.9	67
42	Hepatocyte survival in acute hepatitis is due to c-Jun/AP-1-dependent expression of inducible nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17105-17110.	3.3	64
43	Protective Role of Raf-1 in Salmonella-Induced Macrophage Apoptosis. Journal of Experimental Medicine, 2001, 193, 353-364.	4.2	59
44	Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20423-20428.	3.3	58
45	Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos. Genes and Development, 2013, 27, 1959-1973.	2.7	53
46	Acquisition of an immunosuppressive protumorigenic macrophage phenotype depending on c-Jun phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17582-17587.	3.3	45
47	Essential role of RSK2 in c-Fos–dependent osteosarcoma development. Journal of Clinical Investigation, 2005, 115, 664-672.	3.9	45
48	JUNB/AP-1 controls IFN-γ during inflammatory liver disease. Journal of Clinical Investigation, 2013, 123, 5258-5268.	3.9	44
49	Psoriatic skin inflammation is promoted by câ€Jun/APâ€1â€dependent CCL2 and ILâ€23 expression in dendritic cells. EMBO Molecular Medicine, 2021, 13, e12409.	3.3	42
50	Epidermal JunB represses G-CSF transcription and affects haematopoiesis and bone formation. Nature Cell Biology, 2008, 10, 1003-1011.	4.6	41
51	Stable murine chondrogenic cell lines derived from c- <i>fos</i> -induced cartilage tumors. Journal of Bone and Mineral Research, 1993, 8, 839-847.	3.1	35
52	A waste of insulin interference. Nature, 2015, 521, 430-431.	13.7	34
53	An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
54	Fra-1 substitutes for c-Fos in AP-1-mediated signal transduction in retinal apoptosis. Journal of Neurochemistry, 2002, 80, 1089-1094.	2.1	27

#	Article	IF	CITATIONS
55	Pharmacologic Activation of LXR Alters the Expression Profile of Tumor-Associated Macrophages and the Abundance of Regulatory T Cells in the Tumor Microenvironment. Cancer Research, 2021, 81, 968-985.	0.4	27
56	Role of heterodimerization of c-Fos and Fra1 proteins in osteoclast differentiation. Bone, 2007, 40, 867-875.	1.4	26
57	Activator protein 1 transcription factor fos-related antigen 1 (fra-1) is dispensable for murine liver fibrosis, but modulates xenobiotic metabolism. Hepatology, 2014, 59, 261-273.	3.6	25
58	Signalling in inflammatory skin disease by AP-1 (Fos/Jun). Clinical and Experimental Rheumatology, 2015, 33, S44-9.	0.4	25
59	EGFR is required for FOSâ€dependent bone tumor development via RSK2/CREB signaling. EMBO Molecular Medicine, 2018, 10, .	3.3	24
60	Simultaneous generation of <i>fra</i> â€2 conditional and <i>fra</i> â€2 knockâ€out mice. Genesis, 2007, 45, 447-451.	0.8	23
61	Role of IL-17A signalling in psoriasis and associated bone loss. Clinical and Experimental Rheumatology, 2016, 34, 17-20.	0.4	23
62	In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene, 2021, 40, 2437-2447.	2.6	21
63	Chronic systemic inflammation originating from epithelial tissues. FEBS Journal, 2017, 284, 505-516.	2.2	19
64	JunB is a key regulator of multiple myeloma bone marrow angiogenesis. Leukemia, 2021, 35, 3509-3525.	3.3	19
65	The AP-1 transcription factors c-Jun and JunB are essential for CD8α conventional dendritic cell identity. Cell Death and Differentiation, 2021, 28, 2404-2420.	5.0	18
66	Role of bulge epidermal stem cells and <scp>TSLP</scp> signaling in psoriasis. EMBO Molecular Medicine, 2019, 11, e10697.	3.3	17
67	Topical application of an amygdalin analogue reduces inflammation and keratinocyte proliferation in a psoriasis mouse model. Experimental Dermatology, 2021, 30, 1662-1674.	1.4	16
68	Cutaneous Immune Cell-Microbiota Interactions Are Controlled by Epidermal JunB/AP-1. Cell Reports, 2019, 29, 844-859.e3.	2.9	13
69	Targeting AP-1 transcription factors by CRISPR in the prostate. Oncotarget, 2021, 12, 1956-1961.	0.8	11
70	Keratinocyte-derived S100A9 modulates neutrophil infiltration and affects psoriasis-like skin and joint disease. Annals of the Rheumatic Diseases, 2022, 81, 1400-1408.	0.5	11
71	Sequestosome 1/p62 enhances chronic skin inflammation. Journal of Allergy and Clinical Immunology, 2021, 147, 2386-2393.e4.	1.5	10
72	Virus Delivery of CRISPR Guides to the Murine Prostate for Gene Alteration. Journal of Visualized Experiments, 2018, , .	0.2	8

#	Article	IF	CITATIONS
73	Syndecan-1 shedding by meprin β impairs keratinocyte adhesion and differentiation in hyperkeratosis. Matrix Biology, 2021, 102, 37-69.	1.5	6
74	TPL-2 Inhibits IFN-β Expression via an ERK1/2-TCF-FOS Axis in TLR4-Stimulated Macrophages. Journal of Immunology, 2022, 208, 941-954.	0.4	3
75	Multiple Myeloma Pathogenesis: The Role of Junb in Bone Marrow Angiogenesis. Blood, 2019, 134, 4341-4341.	0.6	0
76	Combined Targeting of Distinct c-Myc and JunB Transcriptional Programs for Multiple Myelioma Therapy. Blood, 2019, 134, 4415-4415.	0.6	0
77	Combined Targeting of Distinct c-Myc and JunB Transcriptional Programs Inducing Synergistic Anti-Myeloma Activity. Blood, 2021, 138, 2644-2644.	0.6	0