David G Kent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375646/publications.pdf Version: 2024-02-01

DAVID C. KENT

#	Article	IF	CITATIONS
1	The Next Generation of FACS – Not Just a Uniform Blob of Fluorescence. HemaSphere, 2022, 6, e709.	2.7	0
2	Anchors Away: The Critical Role of Membrane Bound Molecules in Regulating Stem Cell Symmetry. HemaSphere, 2022, 6, e678.	2.7	0
3	Clonal dynamics of haematopoiesis across the human lifespan. Nature, 2022, 606, 343-350.	27.8	160
4	STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood, 2022, 140, 1592-1606.	1.4	15
5	Recommendations for empowering early career researchers to improve research culture and practice. PLoS Biology, 2022, 20, e3001680.	5.6	15
6	Just a Spoonful of Sugar Helps the HSCs Move 'Round. HemaSphere, 2021, 5, e551.	2.7	0
7	Somatic mutation landscapes at single-molecule resolution. Nature, 2021, 593, 405-410.	27.8	254
8	Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Advances, 2021, 5, 1922-1932.	5.2	8
9	Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports, 2021, 16, 1614-1628.	4.8	12
10	Exploiting Single-Cell Tools in Gene and Cell Therapy. Frontiers in Immunology, 2021, 12, 702636.	4.8	21
11	Cytokine Combinations wERKing to a Different Tune. HemaSphere, 2021, 5, e623.	2.7	0
12	Bone marrow remodeling supports hematopoiesis in response to immune thrombocytopenia progression in mice. Blood Advances, 2021, 5, 4877-4889.	5.2	4
13	Protocol to maintain single functional mouse hematopoietic stem cells in vitro without cell division. STAR Protocols, 2021, 2, 100927.	1.2	1
14	Clonal Dynamics of Normal Haematopoiesis with Human Ageing. Blood, 2021, 138, 598-598.	1.4	0
15	Clonal Tracking By Whole Genome Sequencing Permits Comprehensive Mapping of the Genomic Landscape in Pre- and Post-Gene Therapy Sickle Cell Patients. Blood, 2021, 138, 559-559.	1.4	4
16	Longitudinal Cytokine Profiling Identifies GROâ€Î± and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia. HemaSphere, 2020, 4, e371.	2.7	37
17	Tracking hematopoietic stem cells and their progeny using whole-genome sequencing. Experimental Hematology, 2020, 83, 12-24.	0.4	19
18	Survey Says: "COVID-19 Lockdown Hits Young Faculty and Clinical Trials― Stem Cell Reports, 2020, 15, 1-5.	4.8	24

DAVID G KENT

#	Article	IF	CITATIONS
19	Lemonade From Lemons: Recruiting Blood Stem Cells into Action. HemaSphere, 2020, 4, e416.	2.7	0
20	There and Back Again: A Cytokine Receptor's Tail. HemaSphere, 2020, 4, e349.	2.7	2
21	Response to Collinson et al. Comment. HemaSphere, 2020, 4, e491.	2.7	0
22	MDS and TP53: When One Hit Just Isn't Enough…. HemaSphere, 2020, 4, e494.	2.7	0
23	Emerging single-cell tools are primed to reveal functional and molecular heterogeneity in malignant hematopoietic stem cells. Current Opinion in Hematology, 2019, 26, 214-221.	2.5	9
24	Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood, 2018, 131, 649-661.	1.4	70
25	A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood, 2018, 131, e1-e11.	1.4	158
26	Population dynamics of normal human blood inferred from somatic mutations. Nature, 2018, 561, 473-478.	27.8	427
27	Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Blood, 2018, 132, 791-803.	1.4	24
28	Order Matters: The Order of Somatic Mutations Influences Cancer Evolution. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a027060.	6.2	46
29	Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5822-5829.	7.1	89
30	Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment. Cell Reports, 2017, 19, 1503-1511.	6.4	76
31	Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia, 2017, 31, 720-727.	7.2	105
32	Adult Hematopoiesis. , 2016, , 15-25.		0
33	ldentification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes. Blood, 2016, 128, 1928-1939.	1.4	6
34	A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood, 2016, 128, e20-e31.	1.4	608
35	Isolation and Assessment of Single Longâ€Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow. Current Protocols in Stem Cell Biology, 2016, 38, 2A.4.1-2A.4.24.	3.0	15
36	Understanding hematopoiesis from a single-cell standpoint. Experimental Hematology, 2016, 44, 447-450.	0.4	5

DAVID G KENT

#	Article	IF	CITATIONS
37	JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene, 2016, 35, 2235-2246.	5.9	24
38	Index sorting resolves heterogeneous murine hematopoietic stemÂcellÂpopulations. Experimental Hematology, 2015, 43, 803-811.	0.4	44
39	Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell, 2015, 16, 712-724.	11.1	376
40	Effect of Mutation Order on Myeloproliferative Neoplasms. New England Journal of Medicine, 2015, 372, 601-612.	27.0	467
41	Effect of Mutation Order on Myeloproliferative Neoplasms. New England Journal of Medicine, 2015, 372, 1865-1866.	27.0	20
42	The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature, 2014, 510, 268-272.	27.8	292
43	JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood, 2014, 123, 3139-3151.	1.4	77
44	Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. Experimental Hematology, 2014, 42, 841-851.	0.4	17
45	Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal. Cell Reports, 2014, 7, 1956-1967.	6.4	45
46	Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera?. Blood, 2014, 124, 3332-3334.	1.4	3
47	The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nature Cell Biology, 2013, 15, 916-925.	10.3	292
48	Somatic <i>CALR</i> Mutations in Myeloproliferative Neoplasms with Nonmutated <i>JAK2</i> . New England Journal of Medicine, 2013, 369, 2391-2405.	27.0	1,556
49	Self-Renewal of Single Mouse Hematopoietic Stem Cells Is Reduced by JAK2V617F Without Compromising Progenitor Cell Expansion. PLoS Biology, 2013, 11, e1001576.	5.6	77
50	Order Matters: Sequence Of Mutation Acquisition In Myeloproliferative Neoplasms Impacts Disease Pathogenesis and Stem Cell Potency. Blood, 2013, 122, 2888-2888.	1.4	2
51	Varying levels of aldehyde dehydrogenase activity in adult murine marrow hematopoietic stem cells are associated with engraftment and cell cycle status. Experimental Hematology, 2012, 40, 857-866.e5.	0.4	16
52	Hematopoietic Stem Cell Subtypes Expand Differentially during Development and Display Distinct Lymphopoietic Programs. Cell Stem Cell, 2012, 10, 273-283.	11.1	277
53	Ontogeny stage-independent and high-level clonal expansion in vitro of mouse hematopoietic stem cells stimulated by an engineered NUP98-HOX fusion transcription factor. Blood, 2011, 118, 4366-4376.	1.4	18
54	High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nature Methods, 2011, 8, 581-586.	19.0	299

DAVID G KENT

#	Article	IF	CITATIONS
55	Cell of Origin in AML: Susceptibility to MN1-Induced Transformation Is Regulated by the MEIS1/AbdB-like HOX Protein Complex. Cancer Cell, 2011, 20, 39-52.	16.8	76
56	Mouse models of myeloproliferative neoplasms: JAK of all grades. DMM Disease Models and Mechanisms, 2011, 4, 311-317.	2.4	87
57	Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15443-15448.	7.1	154
58	Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood, 2009, 113, 6342-6350.	1.4	300
59	Regulation of Hematopoietic Stem Cells by the Steel Factor/KIT Signaling Pathway. Clinical Cancer Research, 2008, 14, 1926-1930.	7.0	155
60	Steel factor coordinately regulates the molecular signature and biologic function of hematopoietic stem cells. Blood, 2008, 112, 560-567.	1.4	55
61	Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5878-5882.	7.1	209
62	Long-Term Propagation of Distinct Hematopoietic Differentiation Programs In Vivo. Cell Stem Cell, 2007, 1, 218-229.	11.1	520
63	Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood, 2007, 109, 5043-5048.	1.4	100
64	A Modified Polymerase Chain Reaction-Long Serial Analysis of Gene Expression Protocol Identifies Novel Transcripts in Human CD34+Bone Marrow Cells. Stem Cells, 2007, 25, 1681-1689.	3.2	8
65	Isolation and Assessment of Longâ€∓erm Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow. Current Protocols in Stem Cell Biology, 2007, 3, Unit 2A.4.	3.0	16
66	High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8185-8190.	7.1	110
67	Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. Journal of Clinical Investigation, 2006, 116, 2808-2816.	8.2	315
68	Rapid and Irreversible Alteration of the Ability of Hematopoietic Stem Cells To Execute Both Symmetric and Asymmetric Self-Renewal Divisions by Exposure to Reduced Steel Factor Concentrations with No Effect on Their Survival or Mitogenesis Blood, 2006, 108, 684-684.	1.4	0