
John W Connell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chemical Physics Letters, 2002, 364, 303-308.	2.6	716
2	Highly Rechargeable Lithium O ₂ Batteries with a Boron―and Nitrogen odoped Holeyâ€Graphene Cathode. Angewandte Chemie - International Edition, 2017, 56, 6970-6974.	13.8	260
3	Extrusionâ€Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes. Advanced Materials, 2018, 30, e1705651.	21.0	241
4	Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance Ultracapacitors. ACS Nano, 2014, 8, 8255-8265.	14.6	212
5	Carbonâ€Based Metalâ€Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 2019, 31, e1806128.	21.0	188
6	Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. Advanced Functional Materials, 2015, 25, 2920-2927.	14.9	150
7	Highâ€Performance, Longâ€Life, Rechargeable Li–CO ₂ Batteries based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms. Advanced Materials, 2020, 32, e1907436.	21.0	133
8	Ultrahigh-Capacity Lithium–Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes. Nano Letters, 2017, 17, 3252-3260.	9.1	132
9	Highâ€Performance Li O ₂ Batteries Based on Metalâ€Free Carbon Quantum Dot/Holey Graphene Composite Catalysts. Advanced Functional Materials, 2018, 28, 1804630.	14.9	121
10	Flexible lithium–CO ₂ battery with ultrahigh capacity and stable cycling. Energy and Environmental Science, 2018, 11, 3231-3237.	30.8	117
11	Nitrogen-Doped Holey Graphene for High-Performance Rechargeable Li–O ₂ Batteries. ACS Energy Letters, 2016, 1, 260-265.	17.4	116
12	Nitrogenâ€Doped Holey Graphene as an Anode for Lithiumâ€lon Batteries with High Volumetric Energy Density and Long Cycle Life. Small, 2015, 11, 6179-6185.	10.0	115
13	Bulk preparation of holey graphene via controlled catalytic oxidation. Nanoscale, 2013, 5, 7814.	5.6	97
14	Holey graphene: a unique structural derivative of graphene. Materials Research Letters, 2017, 5, 209-234.	8.7	85
15	An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy, 2020, 71, 104595.	16.0	80
16	Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings. ACS Applied Materials & Interfaces, 2016, 8, 29478-29485.	8.0	76
17	Scalable Dry Processing of Binder-Free Lithium-Ion Battery Electrodes Enabled by Holey Graphene. ACS Applied Energy Materials, 2019, 2, 2990-2997.	5.1	55
18	Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture. ACS Nano, 2017, 11, 3189-3197.	14.6	44

JOHN W CONNELL

#	Article	IF	CITATIONS
19	Highly compressible, binderless and ultrathick holey graphene-based electrode architectures. Nano Energy, 2017, 31, 386-392.	16.0	39
20	Direct Mechanochemical Formation of Metal Nanoparticles on Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14858-14862.	3.1	37
21	Incorporation of multi-walled carbon nanotubes into high temperature resin using dry mixing techniques. Composites Part A: Applied Science and Manufacturing, 2006, 37, 465-475.	7.6	30
22	Facile, Solventâ€Free Preparation of High Density, High Mass Loading Sulfur Cathodes Enabled by Dryâ€Pressable Holey Graphene Scaffolds. Batteries and Supercaps, 2019, 2, 774-783.	4.7	25
23	Highly Rechargeable Lithiumâ€CO ₂ Batteries with a Boron―and Nitrogenâ€Codoped Holeyâ€Graphene Cathode. Angewandte Chemie, 2017, 129, 7074-7078.	2.0	24
24	Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites. High Performance Polymers, 2006, 18, 527-544.	1.8	22
25	Dry Pressing Neat Active Materials into Ultrahigh Mass Loading Sandwich Cathodes Enabled by Holey Graphene Scaffold. ACS Applied Energy Materials, 2020, 3, 6374-6382.	5.1	10
26	Dry-pressed lithium nickel cobalt manganese oxide (NCM) cathodes enabled by holey graphene host. Electrochimica Acta, 2020, 362, 137129.	5.2	9
27	Shuttling Induced Starvation of Redox Mediators in High Areal Capacity Rechargeable Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2020, 167, 080522.	2.9	7
28	Practical considerations in designing solid state Li-S cells for electric aviation. Electrochimica Acta, 2022, 403, 139406.	5.2	7
29	Architecture Transformations of Ultrahigh Areal Capacity Air Cathodes for Lithiumâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 120-130.	4.7	5
30	Holey Graphene–Enabled Solvent-Free Preparation of Ultrahigh Mass Loading Selenium Cathodes for High Areal Capacity Lithium–Selenium Batteries. Frontiers in Energy Research, 2021, 9, .	2.3	3
31	Li-Ion Permeability of Holey Graphene in Solid State Batteries: A Particle Dynamics Study. ACS Applied Materials & Interfaces, 2022, 14, 21363-21370.	8.0	1