
Ana Blas GarcÃa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374816/publications.pdf Version: 2024-02-01

ANA RLAS CARCÃA

#	Article	IF	CITATIONS
1	Macrophages Modulate Hepatic Injury Involving NLRP3 Inflammasome: The Example of Efavirenz. Biomedicines, 2022, 10, 109.	3.2	6
2	Down-Regulation of the Longevity-Associated Protein SIRT1 in Peripheral Blood Mononuclear Cells of Treated HIV Patients. Cells, 2022, 11, 348.	4.1	2
3	Metabolic-associated fatty liver disease: From simple steatosis toward liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, organized by the Spanish Association for the Study of the Liver (AEEH). GastroenterologAa Y HepatologAa, 2022, 45, 724-734.	0.5	3
4	Implication of autophagy in the antifibrogenic effect of Rilpivirine: when more is less. Cell Death and Disease, 2022, 13, 385.	6.3	4
5	Apoptosis of Hepatocytes: Relevance for HIV-Infected Patients under Treatment. Cells, 2021, 10, 410.	4.1	8
6	Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet?. Journal of Pathology, 2021, 254, 216-228.	4.5	30
7	NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved. Cells, 2021, 10, 1687.	4.1	21
8	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 4	62 Td (editio 1,430
9	Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut, 2020, 69, 920-932.	12.1	70
10	p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Research, 2020, 178, 104784.	4.1	6
11	Differential Effects of Biologics on Psoriasis-Related Vascular Inflammation and Risk of Thrombosis. Journal of Investigative Dermatology, 2020, 140, 2294-2298.e6.	0.7	4
12	Protein tyrosine phosphatase 1b deficiency protects against hepatic fibrosis by modulating nadph oxidases. Redox Biology, 2019, 26, 101263.	9.0	18
13	Modulating Myeloid Immune Cell Migration Using Multivalently Presented Monosaccharide Ligands for Advanced Immunotherapy. Advanced Therapeutics, 2019, 2, 1900145.	3.2	2
14	PS-094-Selective activation of JAK-STATI-mediated apoptosis in hepatic stellate cells as a new therapeutic option for liver fibrosis: Role of rilpivirine. Journal of Hepatology, 2019, 70, e60-e61.	3.7	0
15	Mitophagy in human astrocytes treated with the antiretroviral drug Efavirenz: Lack of evidence or evidence of the lack. Antiviral Research, 2019, 168, 36-50.	4.1	7
16	Abacavir Induces Arterial Thrombosis in a Murine Model. Journal of Infectious Diseases, 2018, 218, 228-233.	4.0	10
17	Role of p62/SQSTM1 beyond autophagy: a lesson learned from drugâ€induced toxicity <i>in vitro</i> . British Journal of Pharmacology, 2018, 175, 440-455.	5.4	29

3.7 1

¹⁸ The antiretroviral rilpivirine induces hepatic regeneration in liver fibrosis and cirrhosis by modulating the STAT3/STAT1 balance. Journal of Hepatology, 2018, 68, S400.

ANA BLAS GARCÃA

#	Article	IF	CITATIONS
19	Ensuring the Consistency of Biosimilars. Current Pharmaceutical Design, 2018, 23, 6733-6738.	1.9	4
20	Transcriptome-based repurposing of apigenin as a potential anti-fibrotic agent targeting hepatic stellate cells. Scientific Reports, 2017, 7, 42563.	3.3	29
21	p62/sqstm1 in a drug-induced model of hepatotoxicity: a novel role beyond autophagy. Journal of Hepatology, 2017, 66, S397-S398.	3.7	Ο
22	Oxidative and endoplasmic reticulum stress is impaired in leukocytes from metabolically unhealthy vs healthy obese individuals. International Journal of Obesity, 2017, 41, 1556-1563.	3.4	33
23	Lon protease: a novel mitochondrial matrix protein in the interconnection between drugâ€induced mitochondrial dysfunction and endoplasmic reticulum stress. British Journal of Pharmacology, 2017, 174, 4409-4429.	5.4	27
24	The anti-human immunodeficiency virus drug rilpivirine decreases hepatic injury in a nutritional model of non-alcoholic fatty liver disease through activation of the IL6/IL22-STAT3-p53 axis. Journal of Hepatology, 2017, 66, S162.	3.7	0
25	Efavirenz: What is known about the cellular mechanisms responsible for its adverse effects. European Journal of Pharmacology, 2017, 812, 163-173.	3.5	37
26	Tenofovir-induced toxicity in renal proximal tubular epithelial cells. Aids, 2017, 31, 1679-1684.	2.2	12
27	Sa1606 Effect of Liver Progenitor Cells on Hepatic Stellate Cells. Gastroenterology, 2016, 150, S340.	1.3	0
28	Novel Function of Mitochondrial Lon Protease (LONP) in a Drug-Induced Dual Model of Er-Stress and Mitochondrial Dysfunction in Hepatic Cells. Journal of Hepatology, 2016, 64, S237.	3.7	0
29	Toxicological properties of two fluorescent carbon quantum dots with onion ring morphology and their usefulness as bioimaging agents. RSC Advances, 2016, 6, 30611-30622.	3.6	4
30	The purine analogues abacavir and didanosine increase acetaminophen-induced hepatotoxicity by enhancing mitochondrial dysfunction. Journal of Antimicrobial Chemotherapy, 2016, 71, 916-926.	3.0	12
31	Endoplasmic Reticulum and Mitochondria: Independent Roles and Crosstalk in Fatty Liver Diseases and Hepatic Inflammation. Current Pharmaceutical Design, 2016, 22, 2607-2618.	1.9	19
32	FP187MITOCHONDRIAL DYSFUNCTION INDUCED BY TENOFOVIR IN RENAL CELLS. POTENTIATION OF THE EFFECTS BY CO-STIMULATION WITH ANGIOTENSIN II. Nephrology Dialysis Transplantation, 2015, 30, iii129-iii129.	0.7	0
33	Involvement of Nitric Oxide in the Mitochondrial Action of Efavirenz: A Differential Effect on Neurons and Glial Cells. Journal of Infectious Diseases, 2015, 211, 1953-1958.	4.0	31
34	Efavirenz and the CNS: what we already know and questions that need to be answered. Journal of Antimicrobial Chemotherapy, 2015, 70, 2693-2708.	3.0	138
35	Efavirenz alters mitochondrial respiratory function in cultured neuron and glial cell lines. Journal of Antimicrobial Chemotherapy, 2015, 70, 2249-2254.	3.0	53
36	Is Autophagy Altered in the Leukocytes of Type 2 Diabetic Patients?. Antioxidants and Redox Signaling, 2015, 23, 1050-1056.	5.4	18

ANA BLAS GARCÃA

#	Article	IF	CITATIONS
37	Differential effects of anti-TNF-α and anti-IL-12/23 agents on human leukocyte–endothelial cell interactions. European Journal of Pharmacology, 2015, 765, 355-365.	3.5	30
38	Mitochondrial (dys)function – a factor underlying the variability of efavirenzâ€induced hepatotoxicity?. British Journal of Pharmacology, 2015, 172, 1713-1727.	5.4	27
39	Lack of mitochondrial toxicity of darunavir, raltegravir and rilpivirine in neurons and hepatocytes: a comparison with efavirenz. Journal of Antimicrobial Chemotherapy, 2014, 69, 2995-3000.	3.0	48
40	Neuronal Bioenergetics and Acute Mitochondrial Dysfunction: A Clue to Understanding the Central Nervous System Side Effects of Efavirenz. Journal of Infectious Diseases, 2014, 210, 1385-1395.	4.0	69
41	The Pivotal Role of Nitric Oxide: Effects on the Nervous and Immune Systems. Current Pharmaceutical Design, 2014, 20, 4679-4689.	1.9	22
42	Evidence of an interplay between ER stress/UPR and mitochondria in human hepatic cells treated with the antiretroviral drug Efavirenz. Free Radical Biology and Medicine, 2013, 65, S18.	2.9	0
43	516 EFAVIRENZ INDUCES ENDOPLASMATIC STRESS IN HUMAN HEPATIC CELLS BY A MECHANISM DIFFERENT THAN THAT ELICITED BY THE PHARMACOLOGICAL INDUCER THAPSIGARGIN. Journal of Hepatology, 2013, 58, S212.	3.7	0
44	ER stress in human hepatic cells treated with Efavirenz: Mitochondria again. Journal of Hepatology, 2013, 59, 780-789.	3.7	70
45	Profile of stress and toxicity gene expression in human hepatic cells treated with Efavirenz. Antiviral Research, 2012, 94, 232-241.	4.1	31
46	Mitochondrial interference by anti-HIV drugs: mechanisms beyond Pol-Î ³ inhibition. Trends in Pharmacological Sciences, 2011, 32, 715-725.	8.7	113
47	Future Perspectives in NNRTI-Based Therapy: Bases for Understanding Their Toxicity. , 2011, , .		1
48	Mitochondrial Toxicity in HAART: An Overview of In Vitro Evidence. Current Pharmaceutical Design, 2011, 17, 2130-2144.	1.9	55
49	Oxidative Stress and Mitochondrial Impairment After Treatment with Anti-HIV Drugs: Clinical Implications. Current Pharmaceutical Design, 2011, 17, 4076-4086.	1.9	43
50	Metabolomics of the effect of AMPK activation by AICAR on human umbilical vein endothelial cells. International Journal of Molecular Medicine, 2011, 29, 88-94.	4.0	10
51	Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival-promoting autophagy. Hepatology, 2011, 54, 1009-1019.	7.3	83
52	Autophagy as a rescue mechanism in Efavirenz-induced mitochondrial dysfunction: A lesson from hepatic cells. Autophagy, 2011, 7, 1402-1404.	9.1	32
53	Twenty Years of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Time to Reevaluate their Toxicity. Current Medicinal Chemistry, 2011, 18, 2186-2195.	2.4	26
54	Mitochondria Sentencing About Cellular Life and Death: A Matter of Oxidative Stress. Current Pharmaceutical Design, 2011, 17, 4047-4060.	1.9	61

#	Article	IF	CITATIONS
55	Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology, 2010, 52, 115-125.	7.3	128
56	Enhanced oxidative stress and increased mitochondrial mass during Efavirenzâ€induced apoptosis in human hepatic cells. British Journal of Pharmacology, 2010, 160, 2069-2084.	5.4	138
57	Gastric Antisecretory Drugs Induce Leukocyte-Endothelial Cell Interactions through Gastrin Release and Activation of CCK-2 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 406-413.	2.5	12