List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374755/publications.pdf Version: 2024-02-01

Μλαίλ Ιμτίλς

#	Article	IF	CITATIONS
1	MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. Journal of Magnetism and Magnetic Materials, 2015, 396, 31-37.	2.3	193
2	Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. International Journal of Heat and Mass Transfer, 2016, 101, 948-957.	4.8	164
3	Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. International Journal of Heat and Mass Transfer, 2016, 102, 723-732.	4.8	152
4	On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions. Journal of Magnetism and Magnetic Materials, 2016, 401, 296-303.	2.3	131
5	Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions. International Journal of Heat and Mass Transfer, 2017, 113, 96-105.	4.8	99
6	Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip. AIP Advances, 2015, 5, .	1.3	98
7	Unsteady flow of nanofluid with double stratification and magnetohydrodynamics. International Journal of Heat and Mass Transfer, 2016, 92, 100-109.	4.8	89
8	Impact of magnetohydrodynamics in bidirectional flow of nanofluid subject to second order slip velocity and homogeneous–heterogeneous reactions. Journal of Magnetism and Magnetic Materials, 2015, 395, 294-302.	2.3	85
9	Homogeneous-heterogeneous reactions in MHD flow due to an unsteady curved stretching surface. Journal of Molecular Liquids, 2016, 221, 245-253.	4.9	84
10	Impact of Cattaneo-Christov Heat Flux in Jeffrey Fluid Flow with Homogeneous-Heterogeneous Reactions. PLoS ONE, 2016, 11, e0148662.	2.5	83
11	Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions. Journal of Molecular Liquids, 2016, 223, 1000-1005.	4.9	82
12	Flow between two stretchable rotating disks with Cattaneo-Christov heat flux model. Results in Physics, 2017, 7, 126-133.	4.1	77
13	Three-dimensional rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model. AIP Advances, 2016, 6, .	1.3	76
14	MHD convective flow due to a curved surface with thermal radiation and chemical reaction. Journal of Molecular Liquids, 2017, 225, 482-489.	4.9	74
15	Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole. Physics of Fluids, 2016, 28, .	4.0	71
16	Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: Flow and sensitivity analysis. AEJ - Alexandria Engineering Journal, 2020, 59, 3991-4011.	6.4	69
17	Convective flow of ferrofluid due to a curved stretching surface with homogeneous-heterogeneous reactions. Powder Technology, 2017, 310, 154-162.	4.2	68
18	Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks. Journal of Magnetism and Magnetic Materials, 2016, 413, 39-48.	2.3	66

#	Article	IF	CITATIONS
19	Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions. Advanced Powder Technology, 2016, 27, 2245-2256.	4.1	66
20	MHD 3D flow of nanofluid in presence of convective conditions. Journal of Molecular Liquids, 2015, 212, 203-208.	4.9	65
21	Melting heat transfer in the MHD flow of Cu–water nanofluid with viscous dissipation and Joule heating. Advanced Powder Technology, 2016, 27, 1301-1308.	4.1	58
22	Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. International Journal of Heat and Mass Transfer, 2019, 145, 118781.	4.8	57
23	Effects of homogeneous–heterogeneous reactions in flow of magnetite-Fe3O4 nanoparticles by a rotating disk. Journal of Molecular Liquids, 2016, 216, 845-855.	4.9	55
24	MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions. PLoS ONE, 2016, 11, e0161641.	2.5	55
25	Radiative flow due to stretchable rotating disk with variable thickness. Results in Physics, 2017, 7, 156-165.	4.1	53
26	Squeezing flow past a Riga plate with chemical reaction and convective conditions. Journal of Molecular Liquids, 2017, 225, 569-576.	4.9	52
27	Convective flow of Jeffrey nanofluid due to two stretchable rotating disks. Journal of Molecular Liquids, 2017, 240, 291-302.	4.9	43
28	MHD Flow and Heat Transfer between Coaxial Rotating Stretchable Disks in a Thermally Stratified Medium. PLoS ONE, 2016, 11, e0155899.	2.5	39
29	Impact of chemical reaction on third grade fluid flow with Cattaneo-Christov heat flux. Journal of Molecular Liquids, 2017, 229, 501-507.	4.9	37
30	Effects of homogeneous-heterogeneous reactions in flow of Powell-Eyring fluid. Journal of Central South University, 2015, 22, 3211-3216.	3.0	36
31	Flow of magneto nanofluid by a radiative exponentially stretching surface with dissipation effect. Advanced Powder Technology, 2016, 27, 2214-2222.	4.1	35
32	Slip flow by a variable thickness rotating disk subject to magnetohydrodynamics. Results in Physics, 2017, 7, 503-509.	4.1	35
33	Axisymmetric squeezing flow of third grade fluid in presence of convective conditions. Chinese Journal of Physics, 2017, 55, 738-754.	3.9	34
34	Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 2016, 37, 573-582.	3.6	33
35	Analysis of radiation in a suspension of nanoparticles and gyrotactic microorganism for rotating disk of variable thickness. Chinese Journal of Physics, 2018, 56, 2404-2423.	3.9	33
36	Melting heat transfer in Cu-water and Ag-water nanofluids flow with homogeneous-heterogeneous reactions. Applied Mathematics and Mechanics (English Edition), 2019, 40, 465-480.	3.6	33

#	Article	IF	CITATIONS
37	Mixed convection flow of nanofluid with Newtonian heating. European Physical Journal Plus, 2014, 129, 1.	2.6	32
38	Hydromagnetic mixed convection flow of copper and silver water nanofluids due to a curved stretching sheet. Results in Physics, 2016, 6, 904-910.	4.1	32
39	Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity. Results in Physics, 2018, 8, 341-351.	4.1	32
40	Impact of melting phenomenon in the Falkner–Skan wedge flow of second grade nanofluid: A revised model. Journal of Molecular Liquids, 2016, 215, 664-670.	4.9	28
41	MHD effects on a thermo-solutal stratified nanofluid flow on an exponentially radiating stretching sheet. Journal of Applied Mechanics and Technical Physics, 2017, 58, 214-223.	0.5	27
42	Heat and Mass Transfer Analysis in the Stagnation Region of Maxwell Fluid With Chemical Reaction Over a Stretched Surface. Journal of Thermal Science and Engineering Applications, 2018, 10, .	1.5	27
43	Partial slip effects in flow over nonlinear stretching surface. Applied Mathematics and Mechanics (English Edition), 2015, 36, 1513-1526.	3.6	26
44	Unsteady Convective Boundary Layer Flow of Maxwell Fluid with Nonlinear Thermal Radiation: A Numerical Study. International Journal of Nonlinear Sciences and Numerical Simulation, 2016, 17, 221-229.	1.0	26
45	Soret and Dufour effects in the flow of viscous fluid by a curved stretching surface. Pramana - Journal of Physics, 2020, 94, 1.	1.8	25
46	Modeling and analysis for three-dimensional flow with homogeneous-heterogeneous reactions. AIP Advances, 2015, 5, 107209.	1.3	23
47	Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Applied Mathematics and Mechanics (English Edition), 2017, 38, 1663-1678.	3.6	23
48	Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction. AIP Advances, 2015, 5, .	1.3	22
49	Unsteady flow of carbon nanotubes with chemical reaction and Cattaneo-Christov heat flux model. Results in Physics, 2017, 7, 823-831.	4.1	21
50	Homogeneous-heterogeneous reactions in nonlinear radiative flow of Jeffrey fluid between two stretchable rotating disks. Results in Physics, 2017, 7, 2557-2567.	4.1	19
51	Double stratification in the MHD flow of a nanofluid due to a rotating disk with variable thickness. European Physical Journal Plus, 2017, 132, 1.	2.6	16
52	Magnetohydrodynamic Stagnation Point Flow of a Jeffrey Nanofluid with Newtonian Heating. Journal of Aerospace Engineering, 2016, 29, .	1.4	15
53	Radiative Falkner-Skan flow of Walter-B fluid with prescribed surface heat flux. Journal of Theoretical and Applied Mechanics, 0, , 117.	0.5	15
54	Bidirectional rotating flow of nanofluid over a variable thickened stretching sheet with non-Fourier's heat flux and non-Fick's mass flux theory. PLoS ONE, 2022, 17, e0265443.	2.5	14

#	Article	IF	CITATIONS
55	Features of Cattaneo hristov heat flux model for Stagnation point flow of a Jeffrey fluid impinging over a stretching sheet: A numerical study. Heat Transfer, 2020, 49, 2706-2716.	3.0	13
56	Double Stratification in Flow by Curved Stretching Sheet With Thermal Radiation and Joule Heating. Journal of Thermal Science and Engineering Applications, 2018, 10, .	1.5	12
57	Jeffrey fluid flow due to curved stretching surface with Cattaneo-Christov heat flux. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1173-1186.	3.6	12
58	Magnetohydrodynamics flow of nanofluid with homogeneous-heterogeneous reactions and velocity slip. Thermal Science, 2017, 21, 901-913.	1.1	12
59	Magnetohydrodynamic flow of nanofluid over permeable stretching sheet with convective boundary conditions. Thermal Science, 2016, 20, 1835-1845.	1.1	9
60	Joule heating and MHD effects in flow of second-grade fluid due to a rotating disk with variable thickness. Physica Scripta, 2019, 94, 085203.	2.5	8
61	Magnetohydrodynamic Three-Dimensional Flow of Nanofluid by a Porous Shrinking Surface. Journal of Aerospace Engineering, 2016, 29, .	1.4	6
62	Melting heat and thermal radiation effects in stretched flow of an Oldroyd-B fluid. Applied Mathematics and Mechanics (English Edition), 2017, 38, 957-968.	3.6	5
63	Cattaneo-Christov heat flux in flow by rotating disk with variable thickness. European Physical Journal Plus, 2017, 132, 1.	2.6	5
64	Axisymmetric flow by a rotating disk with Cattaneo–Christov heat flux. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	5
65	Chemical reactive flow of Jeffrey fluid due to a rotating disk with non-Fourier heat flux theory. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2461-2470.	3.6	5
66	Three-dimensional unsteady flow of Maxwell fluid with homogeneous–heterogeneous reactions and Cattaneo–Christov heat flux. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	4
67	Melting heat transfer in the MHD flow of a third-grade fluid over a variable-thickness surface. European Physical Journal Plus, 2017, 132, 1.	2.6	3
68	On chemical reaction and porous medium effect in the MHD flow due to a rotating disk with variable thickness. European Physical Journal Plus, 2017, 132, 1.	2.6	3
69	Effect of homogeneous–heterogeneous reactions in stagnation point flow of third grade fluid past a variable thickness stretching sheet. Neural Computing and Applications, 2018, 30, 3071-3080.	5.6	2
70	Flow due to a convectively heated cylinder with nonlinear thermal radiation. Neural Computing and Applications, 2018, 30, 1095-1101.	5.6	2
71	Consequences of chemical reaction in temperature-dependent thermal conductivity fluid flow by a rotating disk with variable thickness. Pramana - Journal of Physics, 2019, 93, 1.	1.8	2
72	Effect of Porous Medium in Stagnation Point Flow of Ferrofluid Due to a Variable Convected Thicked Sheet. Journal of Heat Transfer, 2019, 141, .	2.1	2

#	Article	IF	CITATIONS
73	Convective analysis of carbon nanotubes in catheter for chemotherapy. International Journal of Ambient Energy, 0, , 1-8.	2.5	0