
LÃ;szlÃ³ J Csetényi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374682/publications.pdf Version: 2024-02-01

LÃ:SZLÃ3 LCSETÃONVL

#	Article	IF	CITATIONS
1	Rock phosphate solubilization by abiotic and fungalâ€produced oxalic acid: reaction parameters and bioleaching potential. Microbial Biotechnology, 2022, 15, 1189-1202.	4.2	10
2	Fungal transformation of natural and synthetic cobaltâ€bearing manganese oxides and implications for cobalt biogeochemistry. Environmental Microbiology, 2022, 24, 667-677.	3.8	8
3	Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete. Science of the Total Environment, 2022, 816, 151501.	8.0	18
4	Fungal colonization and biomineralization for bioprotection of concrete. Journal of Cleaner Production, 2022, 330, 129793.	9.3	10
5	Solubilization of struvite and biorecovery of cerium by Aspergillus niger. Applied Microbiology and Biotechnology, 2022, 106, 821-833.	3.6	4
6	Potential of weathered blast furnace slag for use as an addition in concrete. Magazine of Concrete Research, 2021, 73, 240-251.	2.0	2
7	Colonization and bioweathering of monazite by <i>Aspergillus niger</i> : solubilization and precipitation of rare earth elements. Environmental Microbiology, 2021, 23, 3970-3986.	3.8	18
8	Selective fungal bioprecipitation of cobalt and nickel for multipleâ€product metal recovery. Microbial Biotechnology, 2021, 14, 1747-1756.	4.2	10
9	Chemical and Physical Mechanisms of Fungal Bioweathering of Rock Phosphate. Geomicrobiology Journal, 2021, 38, 384-394.	2.0	12
10	Application of fungal copper carbonate nanoparticles as environmental catalysts: organic dye degradation and chromate removal. Microbiology (United Kingdom), 2021, 167, .	1.8	1
11	Biorecovery of cobalt and nickel using biomass-free culture supernatants from Aspergillus niger. Applied Microbiology and Biotechnology, 2020, 104, 417-425.	3.6	20
12	Oil-based mud waste reclamation and utilisation in low-density polyethylene composites. Waste Management and Research, 2020, 38, 1331-1344.	3.9	4
13	Monazite transformation into Ce―and La containing oxalates by <i>Aspergillus niger</i> . Environmental Microbiology, 2020, 22, 1635-1648.	3.8	25
14	Biotransformation of struvite by <i>Aspergillus niger</i> : phosphate release and magnesium biomineralization as glushinskite. Environmental Microbiology, 2020, 22, 1588-1602.	3.8	26
15	Fungal transformation of selenium and tellurium located in a volcanogenic sulfide deposit. Environmental Microbiology, 2020, 22, 2346-2364.	3.8	12
16	Fungal formation of selenium and tellurium nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 7241-7259.	3.6	77
17	Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungi. Applied Microbiology and Biotechnology, 2019, 103, 7217-7230.	3.6	40
18	Direct and Indirect Bioleaching of Cobalt from Low Grade Laterite and Pyritic Ores by <i>Aspergillus niger</i> . Geomicrobiology Journal, 2019, 36, 940-949.	2.0	18

LÃiszlÃ³ J Csetényi

#	Article	IF	CITATIONS
19	Feasibility of recovered toner powder as an integral pigment in concrete. Proceedings of Institution of Civil Engineers: Construction Materials, 2019, 172, 201-212.	1.1	4
20	Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. Journal of Polymer Research, 2019, 26, 1.	2.4	20
21	Colonization, penetration and transformation of manganese oxide nodules by <i>Aspergillus niger</i> . Environmental Microbiology, 2019, 21, 1821-1832.	3.8	15
22	Biotransformation of lanthanum by Aspergillus niger. Applied Microbiology and Biotechnology, 2019, 103, 981-993.	3.6	24
23	Influence of modern coal-fired power technologies on fly ash properties and its use in concrete. Advances in Cement Research, 2019, 31, 435-447.	1.6	4
24	Recycling of dimension limestone industry waste in concrete. International Journal of Mining, Reclamation and Environment, 2017, 31, 231-250.	2.8	39
25	Evaluation of fly ash reactivity potential using a lime consumption test. Magazine of Concrete Research, 2017, 69, 954-965.	2.0	7
26	Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Applied Microbiology and Biotechnology, 2016, 100, 5141-5151.	3.6	48
27	Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials. Current Biology, 2016, 26, 950-955.	3.9	53
28	Lead Bioprecipitation by Yeasts Utilizing Organic Phosphorus Substrates. Geomicrobiology Journal, 2016, 33, 294-307.	2.0	27
29	Influence of Portland cement characteristics on air-entrainment in fly ash concrete. Magazine of Concrete Research, 2015, 67, 786-797.	2.0	4
30	<scp>C</scp> a <scp>CO</scp> ₃ and <scp>S</scp> r <scp>CO</scp> ₃ bioprecipitation by fungi isolated from calcareous soil. Environmental Microbiology, 2015, 17, 3082-3097.	3.8	82
31	Sustainable use of marble slurry in concrete. Journal of Cleaner Production, 2015, 94, 304-311.	9.3	177
32	Evaluating the effect of recycled aggregate on damaging AAR in concrete. Magazine of Concrete Research, 2015, 67, 598-610.	2.0	13
33	Durability studies on concrete containing wollastonite. Journal of Cleaner Production, 2015, 87, 726-734.	9.3	54
34	Biomineralization of Metal Carbonates by <i>Neurospora crassa</i> . Environmental Science & Technology, 2014, 48, 14409-14416.	10.0	124
35	Engineering and durability properties of fly ash treated lime-stabilised sulphate-bearing soils. Engineering Geology, 2014, 174, 139-148.	6.3	41
36	Mechanical and durability studies on concrete containing wollastonite–fly ash combination. Construction and Building Materials, 2013, 40, 1142-1150.	7.2	63

LÃiszlÃ³ J Csetényi

#	Article	IF	CITATIONS
37	Fly ash influences on sulfate-heave in lime-stabilised soils. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2012, 165, 147-158.	1.0	9
38	Refining the foam index test for use with air-entrained fly ash concrete. Magazine of Concrete Research, 2012, 64, 967-978.	2.0	9
39	Mechanisms of Sulfate Heave Prevention in Lime Stabilized Clays Through Pozzolanic Additions. , 2009, , .		0
40	Phase equilibrium study in the CaO–K2O–B2O3–H2O system at 25°C. Cement and Concrete Research, 2001, 31, 1087-1091.	11.0	21
41	Immobilization of caesium-loaded ion exchange resins in zeolite-cement blends. Cement and Concrete Research, 1999, 29, 479-485.	11.0	42