Gregory A Newby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374408/publications.pdf

Version: 2024-02-01

30 papers

7,095 citations

23 h-index 32 g-index

35 all docs 35 docs citations

35 times ranked

6014 citing authors

#	Article	IF	CITATIONS
1	Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 2022, 40, 402-410.	9.4	293
2	Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human TÂcells and hematopoietic stem and progenitor cells using base editing. Molecular Therapy, 2022, 30, 130-144.	3.7	23
3	Engineered virus-like particles for efficient inÂvivo delivery of therapeutic proteins. Cell, 2022, 185, 250-265.e16.	13.5	251
4	In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nature Communications, 2022, 13, 1830.	5.8	42
5	Prioritization of autoimmune disease-associated genetic variants that perturb regulatory element activity in T cells. Nature Genetics, 2022, 54, 603-612.	9.4	15
6	Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nature Biomedical Engineering, 2021, 5, 169-178.	11.6	90
7	Precision genome editing using cytosine and adenine base editors in mammalian cells. Nature Protocols, 2021, 16, 1089-1128.	5.5	90
8	In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 2021, 589, 608-614.	13.7	275
9	Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biology, 2021, 22, 83.	3.8	62
10	Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature, 2021, 595, 295-302.	13.7	175
11	Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnology, 2021, 39, 1414-1425.	9.4	118
12	InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124.	3.7	87
13	Functional correction of i>CFTR / i>mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Research, 2021, 49, 10558-10572.	6.5	25
14	Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 2021, 184, 5635-5652.e29.	13.5	332
15	Base Editor Correction of COL7A1 in RecessiveÂDystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. Journal of Investigative Dermatology, 2020, 140, 338-347.e5.	0.3	69
16	In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Science Translational Medicine, 2020, 12, .	5.8	114
17	Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 2020, 38, 883-891.	9.4	502
18	Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nature Biotechnology, 2020, 38, 471-481.	9.4	234

#	Article	IF	CITATIONS
19	Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nature Biotechnology, 2020, 38, 620-628.	9.4	272
20	Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nature Communications, 2020, 11 , 1979 .	5 . 8	66
21	Adenosine Base Editing of \hat{I}^3 -Globin Promoters Induces Fetal Hemoglobin and Inhibit Erythroid Sickling. Blood, 2020, 136, 21-22.	0.6	8
22	Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology, 2019, 37, 1070-1079.	9.4	215
23	Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576, 149-157.	13.7	2,662
24	Base Editing: Efficient Installation of Point Mutations with Minimal Byproducts. Stem Cells and Development, 2019, 28, 712-713.	1.1	0
25	Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36, 843-846.	9.4	644
26	Microbial specialization by prions. Prion, 2018, 12, 157-161.	0.9	10
27	A Genetic Tool to Track Protein Aggregates and Control Prion Inheritance. Cell, 2017, 171, 966-979.e18.	13.5	61
28	Pioneer cells established by the [SWI+] prion can promote dispersal and out-crossing in yeast. PLoS Biology, 2017, 15, e2003476.	2.6	15
29	Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism. Cell, 2014, 158, 1083-1093.	13.5	158
30	Blessings in disguise: biological benefits of prion-like mechanisms. Trends in Cell Biology, 2013, 23, 251-259.	3.6	130